

MARCELLUS CAPITAL GROUP

Investing into **Green Hydrogen**

Important notice

Disclaimer

This Business Information Pack (“BIP”) has been prepared based on information and opinions provided by the management of Semarak Petro Sdn Bhd (“SPSB”) and Semarak Renewable Energy Sdn Bhd (“SRESB”) (collectively “the Companies”). This BIP is prepared to provide the Board of Directors (“BoD”) with information about the business and the project to be undertaken by SRESB for the BoDs’ internal assessment purposes only. The information contained in this BIP are strictly confidential.

This BIP does not purport to be all-inclusive or necessarily contain all the information that the BoD may desire in determining whether or not to undertake the project and it may be updated, revised or amended. The information contained in the BIP does not take into account events or circumstances arising after 28 April 2023 and there is no obligation to update the BIP or to revise the information contained therein for such events or circumstances. The BIP is not intended to be provided to prospective investor(s) or form the basis of any investment decision by a prospective investor. Any interested parties should carry out their own investigations and analysis of the business and of the data referred to in the BIP and should consult their own advisers before proceeding with any offer.

All information and opinions contained in this BIP have been provided by the management of the Companies and this BIP has not been independently verified as to its accuracy. No representation or warranty, expressed or implied, is given as to the accuracy or completeness of the contents of this BIP or any other document or information supplied, or which may be supplied at any time or any opinions or projections expressed herein or therein, nor is any such party under any obligation to update the BIP or correct any inaccuracies or omissions in it which may exist or become apparent. In particular, for reasons of commercial sensitivity, information on certain matters has not been included in the BIP.

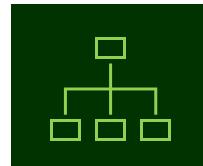
The projected financial information contained in this BIP is based on estimates and assumptions made by the management of the Companies, about circumstances and events that have not yet taken place. Accordingly, there can be no assurance that the projected results will be attained. In particular, but without prejudice to the generality of the foregoing, no representation or warranty whatsoever is given in relation to the reasonableness or achievability of the projections contained in this BIP or in relation to the bases and assumptions underlying such projections and you must satisfy yourself in relation to the reasonableness, achievability and accuracy thereof.

The receipt of the BIP shall not be taken as constituting the giving of investment advice or considered as a recommendation to undertake the project. The BoD must make their own independent assessment of the merits of the project. If any other parties and/or persons choose to rely upon any of the contents of the BIP, they do so at their own risk.

Table of contents

Section	Page
1 Transaction opportunity and key investment highlights	4
• Introduction	5
• Transaction opportunity	6
• Key investment highlights	8
2 Market outlook	9
• Market overview: Malaysia	12
• Market overview: China	14
• Market overview: Japan	16
• Market overview: Republic of Korea	18
• Opportunities and challenges	20
3 Project and company overview	25
• Background information	26
• Management team	31
4 Preliminary technical assessment overview	32
• Production site assessment and environmental assessment	33
• Production facility and available technologies	36
• Power generation, logistics and risk assessment	39
• Next steps	42
• Engineering, procurement, construction and commissioning contractors	44
5 Financial overview	46
• Cash flow projection	47
6 Appendices	54

Section 1

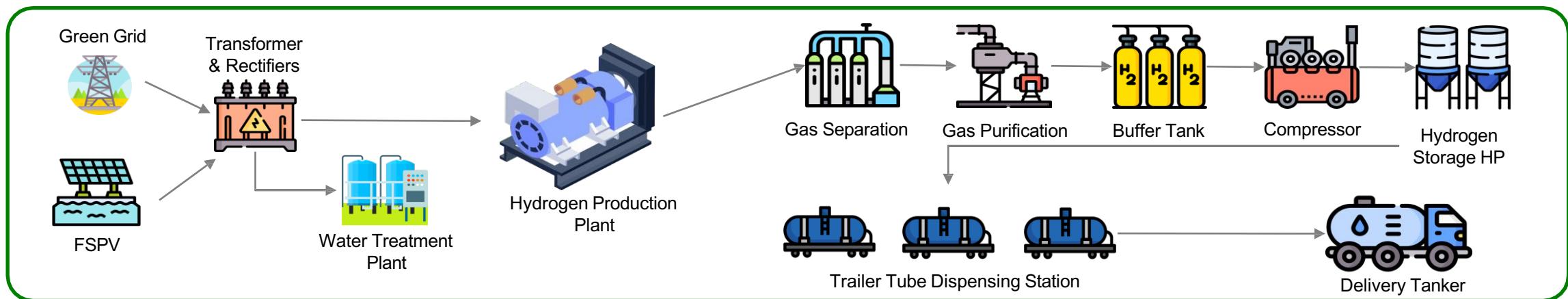

Transaction opportunity and key investment highlights

Project SeRenE – the future of green hydrogen in Kampung Gajah, Perak

“

The project will help lead the way for Malaysia to become a player within the green hydrogen industry and support an ambitious, **green transition** of conventional industries


- ▶ SPSB through SRESB is desirous of undertaking the design, construction and operation of an integrated complex for the production of green hydrogen via large scale electrolysis from renewable energy ("the Project") as illustrated below.


- ▶ SRESB, the joint venture company, was incorporated on 20 June 2022 to undertake the Project. SRESB is currently wholly owned by Ocean Thermal Energy Services Sdn. Bhd.

- ▶ On 1 June 2022, Perak Industrial Resources Sdn Bhd, a wholly owned subsidiary of the Perak State Development Corporation granted the approval in-principle to SPSB to undertake the Project with conditions (further elaborated in Section 3).

- ▶ SRESB had in November 2022 commissioned a technical study conducted by a technical consultant, i.e. Transerve Pte Ltd ("Transerve") outlining the front-end conceptual design of the Project (further elaborated in Section 4).

Project SeRenE is the opportunity to acquire equity interest in SRESB and fund the remaining costs of the Project via debt financing

Key Project Highlights	Target Company
<ul style="list-style-type: none">▶ The Project is located in the District of Kampung Gajah which is anticipated to utilise the water body and land situated on Plot 9 comprising approximately seventy (70) per cent of tin mining lake and thirty (30) per cent of flat land made available by the Perak State Government.▶ Out of the four (4) available plots of land, i.e. Plot 6, Plot 7, Plot 8 and Plot 9, Plot 9 was identified and selected having the largest water body area of approximately 1,439 acres.▶ The floating solar photovoltaic ("PV") farm for phase 1 will be built in two (2) sections with a total installed capacity aggregating 130MW (i.e. installed capacity of 65MW in each section).▶ Based on the power output from the floating solar PV farm and the purchase of renewable energy from the national grid during non-peak power output hours, daily production of hydrogen is estimated at 20 to 22 tonnes per day.▶ The first production of green hydrogen is scheduled in 2025.▶ Plot 9 comprise sufficient land for the potential phase 2 expansion involving ammonia production wherein the project planning is scheduled to commence in 2026.	<p>CURRENT STRUCTURE</p> <p>Ocean Thermal Energy Services Sdn Bhd</p> <p>100.0%</p> <p>Semarak Renewable Energy Sdn Bhd</p> <p>DESIRED STRUCTURE</p> <p>Ocean Thermal Energy Services Sdn Bhd</p> <p>Up to 51%</p> <p>Semarak Renewable Energy Sdn Bhd</p> <p>Up to 49%</p> <p>New Investments</p> <p>ILLUSTRATIVE</p> <p>TARGET COMPANY</p> <ul style="list-style-type: none">▶ As highlighted in the approval in-principle issued by Perak Industrial Resources Sdn Bhd ("PIRSB") to SRESB, the following salient terms and conditions to be incorporated in the Development Agreement and/or Water Rights Agreement, amongst others, must be observed:<ol style="list-style-type: none">i. SRESB is incorporated with a paid-up capital of RM10 mil; andii. The paid-up capital aggregating RM10 mil is required to be raised within six (6) months from the date of the Development Agreement.▶ Project SeRenE is the opportunity to acquire equity interest in SRESB. The management intends to structure the partnership as a jointly owned private company with a view of symmetrical and fair partnership, i.e. on equal terms.▶ The remaining costs of the Project is anticipated to be funded via debt financing.▶ The structure of the equity and debt proportions remain open for negotiation.

Finding the right, responsible and technical savvy partner(s)

General expectations

- ▶ Due to the long-term and expectedly close partnership, identifying the right private partner is of paramount importance.
- ▶ Considering the scope, size and complexity of the Project, it is expected that the private partner is required to possess financial, commercial, technical and organisational resources to undertake the Project.
- ▶ The private partner is expected to be an active long-term strategic partner that will play a significant role in developing, maturing and realising the Project's business case and commercial potential.
- ▶ The partnership will be symmetrical (according to ownership share) and fair.
- ▶ A guiding principle for the Project and its conduct will be to ensure compliance with the latest ESG agenda and clear commitment to sustainability.

The right partnership will contribute...

Financing

Technical expertise

Strategic vision

Innovation

Business acumen

Project management expertise

...and the ability to scale the hydrogen concept to other states

Expected steps and mechanisms that over the lifetime of the Project will ensure responsible partners

Tender phase	Award of construction contract	Construction phase	Establishing common ownership	Operation phase
<ul style="list-style-type: none">▶ Prequalification demands such as technical and financial capabilities are met.▶ Competitive dialogues held to refine tender materials.	<ul style="list-style-type: none">▶ Screening will be based on pre-determined evaluation criteria before construction contracts are awarded.	<ul style="list-style-type: none">▶ Change of control and partners may require prior consent from the State.▶ Change of control or partners can initiate new investment screening.	<ul style="list-style-type: none">▶ Screening of investment will be based on pre-determined evaluation criteria.	<ul style="list-style-type: none">▶ Change of control and partners may require prior consent from the State.

Key investment highlights

First mover

Ability to leverage first-mover advantage for future green hydrogen projects gaining know-how

Long-term investment

Green investment with attractive long-term cash flow profile

Strong Fundamentals

Strong national and international support and attractive location for hydrogen power plant

Green hydrogen production via large scale electrolysis from renewable energy

20 - 22 tonnes per day

First production in 2025

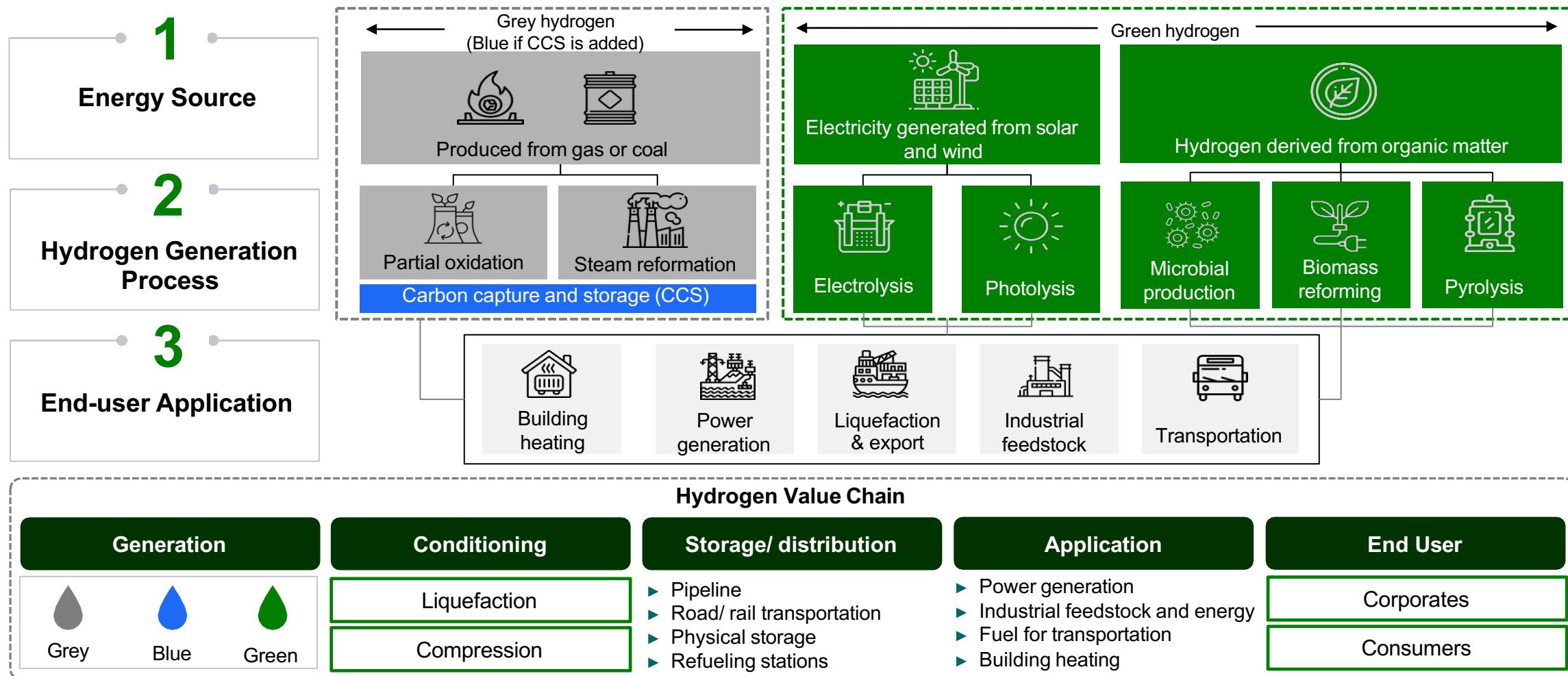
Early Entry

Early entry into Malaysia's new "green power plant" with opportunities to shape design

Growth Potential

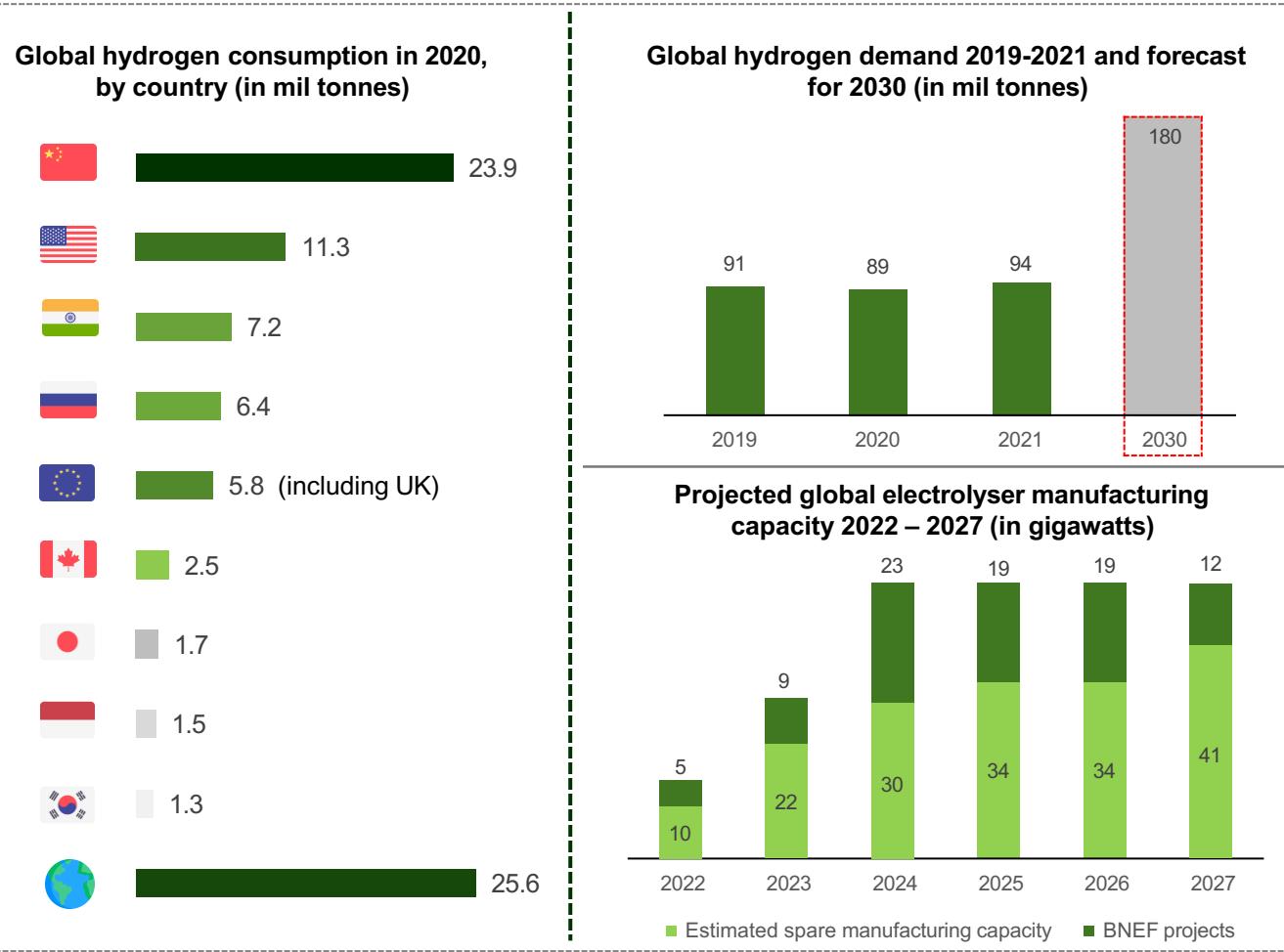
Potential phase 2 expansion involving ammonia production

Active Partnership


An active partnership to optimise business opportunities

Section 2

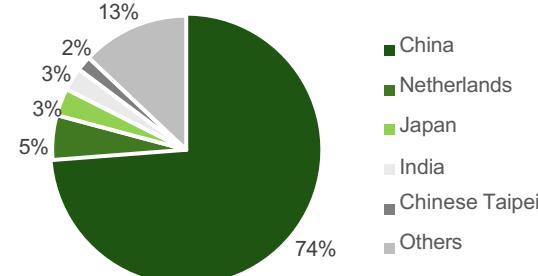
Market outlook


Ways to produce hydrogen and overview of the hydrogen value chain

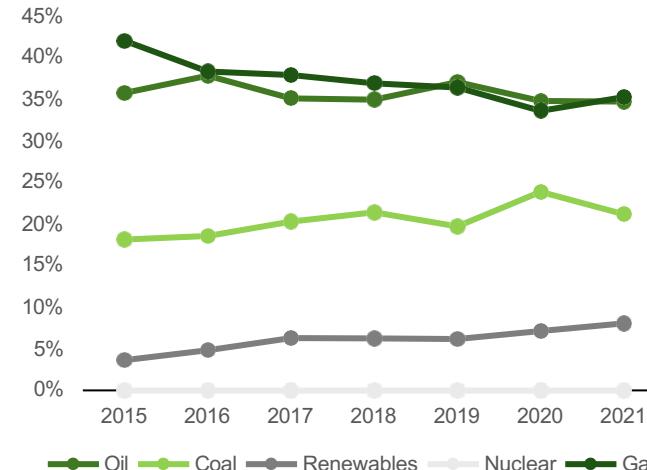
Source: EY-Parthenon Analysis

Global hydrogen market is picking up speed and hydrogen demand is set to reach 180 mil tonnes by 2030

Key highlights


- With more than 110 countries pledging to carbon neutrality by 2050, hydrogen is gaining more traction in recent years as policymakers find alternative solutions to decarbonise their economies.
- Hydrogen is seen as one of the important pillars of a net zero economy and a critical enabler for global transition to cleaner energy.
- The overall global hydrogen demand recorded a 5% increase from 2020 and exceeded previous annual high of 91 mil tonnes in 2019, reaching 94 mil tonnes in 2021 with China being the world's top consumer of hydrogen followed by the United States.
- However, most of the demand were met by hydrogen produced from unabated fossil fuels.
- Presently, hydrogen is primarily used in industries including oil refining and production of ammonia, methanol and steel. The growth of hydrogen demand is expected to be driven by downstream products, i.e. refined fuels for transport, fertilisers for food production and construction materials for buildings.
- Following the increase in demand for hydrogen, it is estimated that the global manufacturing capacity of electrolyzers would grow steadily, which could better support the clean energy transition and facilitate the production of low-emissions hydrogen from renewable energy.
- Through cross sector and multilateral collaborations, news alliances are being formed to develop hydrogen projects and ensure continuous growth of its demand which will help economies achieve greenhouse gas reduction targets.

Market overview: Malaysia



 4th largest exporter of hydrogen in the world, exported **\$802 mil** hydrogen in 2021

Hydrogen export destination countries

Share of primary energy consumption in Malaysia, by source

Key players in the hydrogen industry

Source: Observatory of Economic Complexity, Our World In Data, SEDA, The Edge, National Energy Policy 2022 – 2040 and IRENA

Key highlights

- Under the Malaysia Renewable Energy Roadmap launched on 30 December 2021, Malaysia aims to increase the renewable energy share in the national installed capacity mix to 31% by 2025 and 40% by 2035.
- Malaysia as a signatory of the Paris Climate Agreement in 2015 sees huge potential of transitioning towards, amongst others, the hydrogen economy to reduce 45% of economy-wide carbon intensity [i.e. greenhouse gas ("GHG") from seven GHGs] by 2030.
- The availability of resources, i.e. natural gas and renewables such as hydroelectric, solar and bioenergy positions Malaysia effectively for the competitive production of blue and green hydrogen.
- However, gas and oil continue to account for more than 50% of Malaysia's primary energy consumption with renewables share growing at a slower pace.
- To date, hydrogen is primarily used for heavy industries such as oil refinery process and the production of methanol, ammonia, iron and steel.
- Sarawak is already leading Malaysia's hydrogen sector by tapping into its rich renewable energy potential which can be harnessed to produce low carbon hydrogen and position the state to become a significant player in the global hydrogen value chain.

Government policies and initiatives

The Malaysian government has outlined several key initiatives for the development of the emerging hydrogen economy under the National Energy Policy 2022 – 2040:

Establish a long-term hydrogen roadmap which optimises hydrogen production pathways across green, blue and grey hydrogen

Build a domestic hydrogen ecosystem supported by research and development, technology deployment and commercialisation capabilities across targeted areas across the hydrogen value chain

Develop regulation and legislative framework governing the roll-out of hydrogen production, transport and end-use applications

Form partnerships with industry players to build nationwide hydrogen supply chain capabilities, capacity and infrastructure

MITI estimated that the hydrogen demand in Malaysia could reach **3 mil tonnes by 2050**

“

Technology partnerships and technology transfer from international players will be critical on a range of topics including electrolyser technologies, export terminal technologies, and hydrogen transport technologies between production sites and export terminals.

Sub-focus areas will also be identified in hydrogen technologies such as reducing electrolyser capital costs, increasing electrolyser conversion efficiency and utilisation potential.

”

National Energy Policy 2022 - 2040

By 2050, **70%** of the country's electricity supply is targeted to be sourced from renewable energy

Source: National Energy Policy 2022 – 2040, MIDA, and various news articles

Key projects in the public / private sector

1

Petroliam Nasional Berhad (“PETRONAS”) and Sarawak Energy Berhad signed a Memorandum of Understanding (“MoU”) on 10 November 2020 to strategise a collaboration to explore the commercial production of green hydrogen and its supply chain in Asia

2

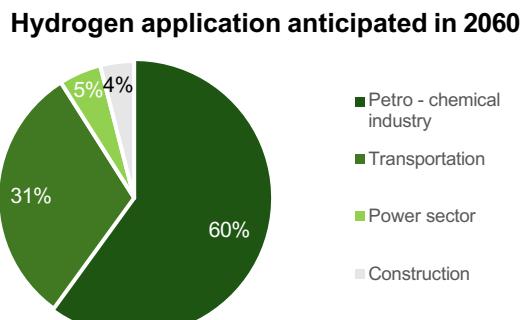
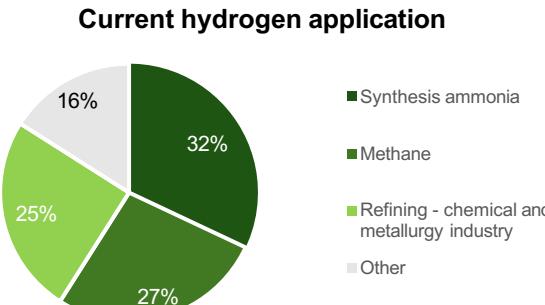
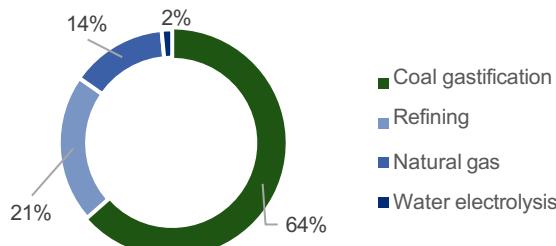
Sarawak Energy Berhad in collaboration with Linde EOX Sdn Bhd launched its first integrated hydrogen production plant and refueling station in Southeast Asia in 2019

3

SEDC Energy Sdn Bhd, inked a tripartite MoU with Japan's Sumitomo Corporation and ENEOS in October 2020 to build a hydrogen plant in Bintulu

Target sector

Energy




The initiatives observed in the Malaysian market is currently focused on power generation:

- In August 2022, TNB and Petronas announced a joint collaboration to conduct feasibility studies on hydrogen and carbon capture
- TNB also aspires to co-fire natural gas with green hydrogen in a re-powered project at the Sultan Ismail Power Station in Terengganu for cleaner electricity generation

China is the world's largest producer of hydrogen, **33 mil tonnes** in 2020

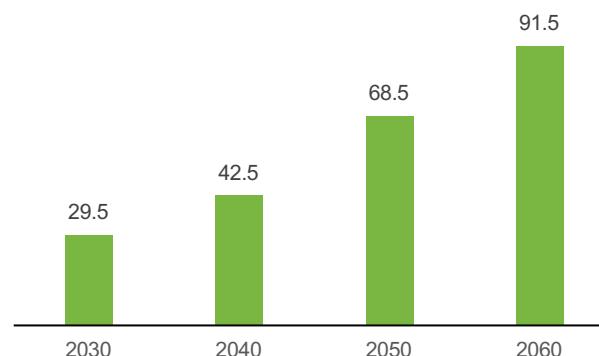
China's hydrogen supply in 2020 by energy source/generation process

Key players in the hydrogen industry

Source: IEA, Hydrogen Council, China Hydrogen Alliance

Key highlights

- ▶ China has set an ambitious goal to reach peak carbon emissions before 2030 and to achieve carbon neutrality by 2060, a major step to address climate change.
- ▶ Low-emission hydrogen and carbon capture, utilisation and storage ("CCUS") technologies have both been identified as key priorities in China's carbon neutrality guidelines.
- ▶ In 2020, hydrogen production in China reached approximately 33 mil tonnes, which amounted to 30% of the world's total production.
- ▶ Although China tops other countries in hydrogen production, about two-thirds of China's hydrogen is produced using coal-fired energy, which generated approximately 360 mil tonnes of carbon dioxide emissions in 2020.
- ▶ Efforts have been made to explore and develop green hydrogen production to help meet industry demand while also address climate concerns.
- ▶ The China Hydrogen Alliance estimates that hydrogen demand in China could reach 35 mil tonnes in 2030 and 60 mil tonnes in 2050. Meanwhile, the organisation also projects that renewable-based hydrogen production could reach 100 mil tonnes by 2060, accounting for 20 percent of the country's final energy consumption.
- ▶ As of July 2021, 53 hydrogen projects have been publicly announced in China, of which 50% are linked to transport applications.



Government policies and initiatives

- ▶ China's national policy on green hydrogen remains conservative. The aim is to first develop hydrogen capabilities and build capacities more generally, and greening it second
- ▶ Since 2016, the Chinese government announced 66 National Key Research and Development Programs ("NKP") focusing on hydrogen technologies, with a total estimated value between RMB1.8 bil and RMB5.0 bil
- ▶ 14 NKPs have an explicit focus on green hydrogen, with a combined estimated value between RMB0.4 bil and RMB1.3 bil
- ▶ Towards the end of the 13th Five-Year Plan (2016–2020), China's hydrogen technology research and development ("R&D") spending increased sixfold, to over USD0.6 bil in 2019
- ▶ Local governments are acting more progressively than the national government, driving the growth of hydrogen industries
- ▶ Approximately 30 local governments mentioned hydrogen in their 14th Five-Year Plans and over 50 cities have issued policies to grow their local hydrogen industry

Plans to produce up to **0.2 mil** tonnes of renewable - based hydrogen annually by 2025

Forecasted hydrogen consumption in China, 2030-2060 (in mil tonnes)

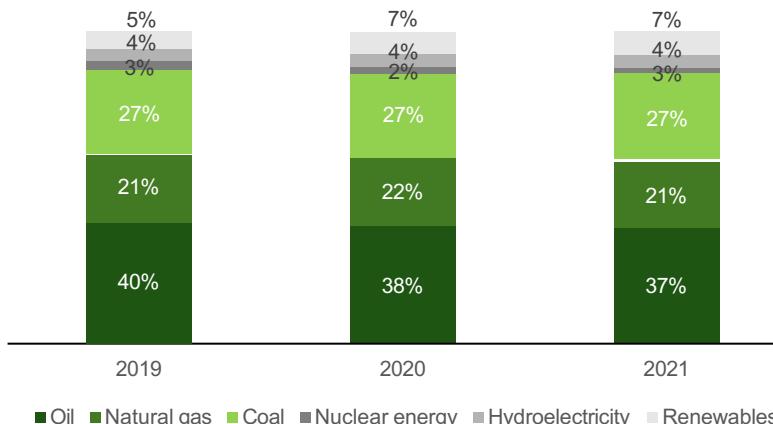
Hydrogen to account for **20%** of final energy consumption by 2060

Source: CSIS, China Hydrogen Alliance, Statista, MERICS, Hydrogen Insight and various news articles

Key projects in the public / private sector

- 1 Sinopec earmarked USD2.8 bil for the integrated wind-power and green hydrogen project to be built in Ulanqab, Inner Mongolia
- 2 Meijin Energy and Jiaxing Transportation Investment Group formed a joint venture in August 2019 for the construction of hydrogen energy infrastructure in Jiaxing, Zhejiang Province
- 3 Shanghai Re-fire Energy Technology Co., Ltd. partnered with the People's Government of Nanhui District to invest in the construction of a hydrogen energy industry base project in Danzao Town focusing on R&D in hydrogen fuel cells, hydrogen-powered fuel-cell vehicles ("FCV") and the related industries

Target sector


Transportation

Majority of China's industrial policy in the hydrogen industry is focused on developing and demonstrating FCVs. Under the Hydrogen FCV Technology Roadmap and New Energy Vehicle Industry Development Plan published in 2016 and 2020 respectively, China projects to reach a national fleet of over 1 million FCVs by 2030 and grow hydrogen refueling stations from 72 units as of mid-2020 to 2,000 units by 2035.

Japan still largely depend on oil and gas as their primary source of energy. Japan's green growth strategy includes, amongst others, developing the hydrogen sector to help achieve carbon neutrality by 2050.

Primary energy consumption in Japan, by fuel
2019-2021

Hydrogen demand in Japan, **2MT** in 2021

Target to boost
demand to **3MT** per
annum by 2030

And **20MT** per
annum by 2050

Key highlights

- Japan is a highly industrialised country with a severe lack of hydrocarbon resources that sees multiple values in using hydrogen and is actively securing access to hydrogen feedstocks.
- The nation aims to expand its hydrogen market from 2 mil tonnes per year in 2021 to 3 mil tonnes per year by 2030 and 20 mil tonnes per year by 2050 while also seeks to reduce the cost of hydrogen from USD1 per cubic meter (Nm³) in 2017 to 30 cents/Nm³ by 2030 and about or below 20 cents/Nm³ by 2050.
- Japan's Basic Hydrogen Strategy and Strategic Roadmap for Hydrogen and Fuel Cell issued by the Ministry of Economy, Trade and Industry of Japan sets out the following aims:
 - Establish an integrated international hydrogen supply chain by 2030 encompassing upstream, midstream and downstream;
 - Reduce hydrogen production costs;
 - Improve the efficiency of hydrogen liquification process technology;
 - Enhance the capacity of above ground liquefied hydrogen storage tanks; and
 - Expand industrial and consumer use of hydrogen and ammonia.
- Under the 6th Strategic Energy Plan, the Japanese government targets for hydrogen or ammonia to comprise 1% of Japan's overall power generation mix by 2030.

Key players in the hydrogen industry

TOYOTA

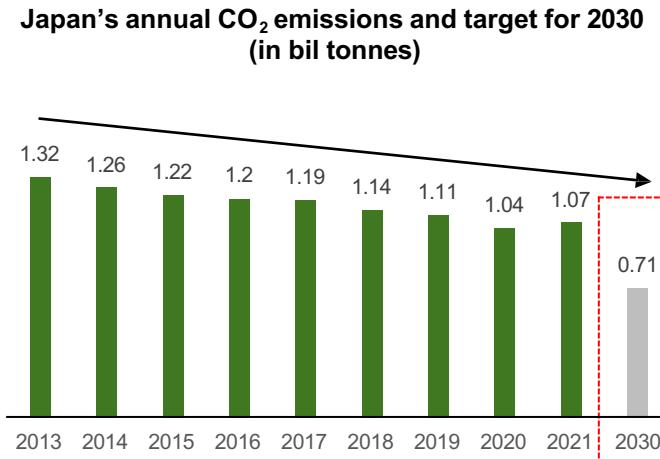
Panasonic

Sumitomo

idemitsu

Fuji Electric

TOSHIBA


丸紅株式会社
Marubeni

Source: Ministry of Economy, Trade and Industry of Japan, East Analytics, Clifford Chance, Statista and CSIS

Government policies and initiatives

- The Japanese government's policy initiatives are focused on:
 - Developing hydrogen supply chain and expanding demand for hydrogen and ammonia; and
 - Substantially reducing the delivered cost of hydrogen (JPY30/Nm³ by 2030).
- The total government budgetary support for hydrogen of JPY98.9 bil for FY2022 includes:
 - Subsidies for FCVs;
 - R&D on fuel cell technologies and hydrogen supply infrastructure;
 - International research collaboration projects for innovative technologies in clean energy (e.g. CCS);
 - Technology development to produce, store and utilise hydrogen; and
 - Pilot projects to develop the hydrogen supply chain.
- Strong public-private partnership is established in major areas of decarbonising activities

Hydrogen to make up 1% of Japan's overall power generation mix by 2030

USD2.7 bil allocated for the development of large-scale hydrogen supply chain project

Source: Ministry of Economy, Trade and Industry of Japan, East Analytics, Clifford Chance and CSIS

Key projects in the public / private sector

1

Brunei Project – Organic Hydrides Technology

World's first international hydrogen supply chain project, developed by a consortium of Japanese companies with the support of the Japanese and Brunei governments receiving financial support from NEDO

2

Australia Project – Hydrogen from Brown Coal

An international supply chain between Australia and Japan involving:

- Brown coal gasification and hydrogen production;
- Hydrogen liquefaction and storage;
- Marine transportation of liquefied hydrogen; and
- Unloading and storage of liquefied hydrogen.

Target sector

Industrial

Beyond its use in the electricity generation and transportation sectors, hydrogen is seen as key for decarbonising industrial sectors, such as steelmaking and petrochemical production

Transportation

Japan's Hydrogen Roadmap 2019 has an ambitious goal of:

- 200,000 FCVs by 2025 and 800,000 by 2030
- 320 locations of hydrogen refueling stations by 2025 and 900 by 2030

1.3 mil tonnes
of hydrogen was
consumed in 2020

Korea's hydrogen industry to double
in size:

KRW14.1 tril in 2020

KRW26.8 tril in 2030

Imported **92.8%** of energy
and natural resources

<1% of hydrogen is sourced
through water electrolysis

Spending on hydrogen project
reached **USD0.7 bil** in
2021, 40% increase from 2020

Key players in the hydrogen industry

LOTTE CHEMICAL

SAMSUNG SDI

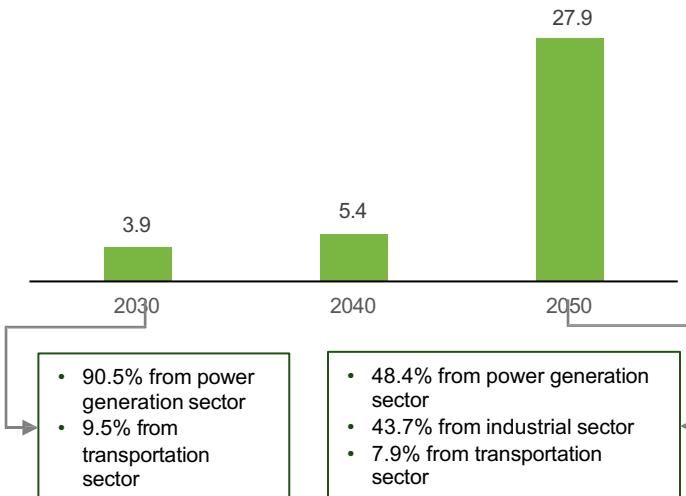
THE LINDE GROUP

Air Liquide

Key highlights

- In September 2021, the Republic of Korea became the 14th country to legislate its commitment to become carbon neutral by 2050.
- Under the Carbon Neutrality Act, the emissions reduction goal stands at 40 percent from 2018 levels by 2030.
- The Republic of Korea plans to source a third of its energy from hydrogen by 2050, making the gas the largest single source of energy nationally.
- As part of its efforts to cut greenhouse gases, the Korean government is planning to increase hydrogen production from about 0.45 mil tonnes per year in 2021 to 1.9 mil tonnes per year by 2030 while importing 1.96 mil tonnes per year of clean hydrogen from abroad.
- South Korea has the third largest public investment in hydrogen after Germany and Japan.
- The spending on hydrogen projects by the South Korean government aggregated USD0.7 bil in 2021, with a further USD2.3 bil committed to establishing a public-private hydrogen-powered fuel-cell electric vehicle market by the end of 2022.
- South Korea is actively exploring various projects with potential hydrogen resource suppliers.

Source: Statista, Ministry of Foreign Affairs of Republic of Korea, Ministry of Environment of Korea, Austrade Report, CSIS and Macquarie



Government policies and initiatives

- Passed the Hydrogen Economy Promotion And Hydrogen Safety Management Act ("Hydrogen Act") in February 2020:
 - Provide an overarching legal framework that outlines the requirements and expectations in areas including subsidies, loans, tax exemptions, and health and safety matters
- Announced the Korean Green New Deal in July 2020 with the aim of creating 1.9m jobs by 2025:
 - Out of KRW74 tril of total capital investment under the Green New Deal, KRW20 tril is allocated to green mobility, particularly hydrogen projects
- To increase R&D on liquefied hydrogen storage technology and the reduction of transportation costs
- To plan and build a specialised hydrogen pipeline network across the country
- To support the development of hydrogen cars, ships, trains and machineries

Aims to produce 3 mil tonnes and import 23 mil tonnes of green hydrogen by 2050

Forecasted hydrogen consumption in South Korea, 2030-2060 (in mil tonnes)

Hydrogen to account for **33%** of total energy consumption by 2050

Source: IEA, IRENA, Austrade Report, CSIS, S&P Global and Macquarie and various news articles

Key projects in the public / private sector

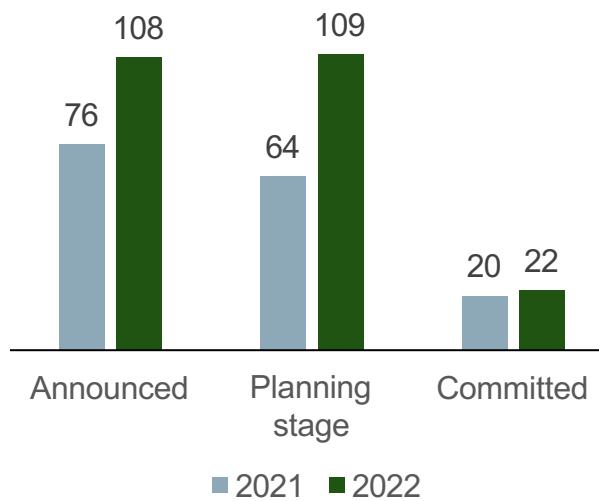
- 1 Hyundai, SK, POSCO, Hanwha, and Hyosung announced KRW42 tril investment commitment in the hydrogen economy by 2030
- 2 Samsung Heavy Industries in partnership with KOGAS, Korea's main natural gas importer, has committed to allocate KRW18 tril to build special terminals in Busan and Yeosu ports by 2024 for the import of green hydrogen
- 3 POSCO announced plans to import ammonia and to roll out large-scale ammonia-based hydrogen production hubs in four locations (Incheon, Daejeon, Yeosu and Ulsan) by 2025
- 4 Air Liquide partnered with KOHYGEN to build hydrogen stations for buses and trucks

Target sector

Transportation

Under the Hydrogen Economy Roadmap 2019, the Korean government outlines the goal of:

- Producing 6.2 mil fuel cell electric vehicles and rolling out at least 1,200 refilling stations by 2040
- Introducing 40,000 hydrogen-fueled buses, 80,000 taxis and 30,000 trucks as well as nurturing the domestic manufacture of appropriate auto parts by 2040


Less than 10% of the hydrogen projects have reached final investment decision (“FID”) stage despite a record high number of project proposals submitted

534 large-scale projects worth **\$240 bil** aim to fully or partially commission through 2030

One third of those projects worth **\$109 bil** are undergoing feasibility and FEED studies

Only **\$22 bil** have reached FID, under construction or are operational

Total announced investment of USD240 bil until 2030 by maturity

- ▶ Europe dominates the proposed hydrogen investments globally, with nearly 314 project proposals worth USD76 bil in total out of which 268 projects are aiming for full or partial commissioning through 2030. This is then followed by North America and Latin America wherein each announced approximately 20% of the total proposed investments globally.
- ▶ Approximately 65% of the total announced investments aggregating USD240 bil focus on clean hydrogen supply, 25% on end-use while transmission and distribution make up the rest of the 10%.
- ▶ One third of the projects with total announced investments of USD109 bil are undergoing feasibility and front-end engineering design (“FEED”) studies.
- ▶ When compared to 2021, total committed projects only grew slightly by 10% or USD2 bil to USD22 bil in 2022, suggesting that there is a lack of demand from the market as many remain skeptical or await further policies and framework from the government as well as funding to incentivize off-takers to enter into long-term hydrogen supply contracts.
- ▶ North America makes up the largest share of the total volume of committed investments representing 35% or USD8 bil. This is followed by Europe which has a more comprehensive and clearer decarbonisation targets and regulatory framework on clean energy and Asia, each representing approximately 25% or USD6 bil.

Source: Hydrogen Insights Report September 2022 published by the Hydrogen Council

Key challenges in the pursuit of green hydrogen economy

Despite strong factors driving the global uptake of green hydrogen, there are some major barriers that may deter or slowdown the development of green hydrogen at scale.

High production, storage and transportation costs

- ▶ Green hydrogen project requires huge upfront investment and the production cost greatly depends on electrolyser system cost, electricity price and operating hours.
- ▶ The cost of storing compressed hydrogen is at least 50% higher than storing methane and is reliant on the cycling of the storage facility.
- ▶ High conversion and transportation costs make transporting hydrogen for export not economically sustainable. The cost would be even higher if reconversion is required.

Low future demand visibility

- ▶ The green hydrogen sector is still in its infancy stage and the current demand and production are driven mainly by climate ambition rather than immediate economic gain.
- ▶ While the interest in using green hydrogen is growing, there is little value recognition and demand remains low for products made using green hydrogen including green steel and green ammonia.
- ▶ As hydrogen is not a publicly traded commodity like oil and most of the trading of hydrogen today are through bilateral agreement between countries or companies, visibility of consumption remains unclear for investments in infrastructure development.

Bankability and funding issues

- ▶ Adequate returns from revenue to service operating costs and debt as well as return on investment remain critical to the bankability of large-scale hydrogen projects.
- ▶ Financial institutions remain cautious in shifting their investments from conventional wind and solar projects to novel technologies such as green hydrogen due to challenges associated with commercialising green hydrogen including regulatory constraints and technology risks.
- ▶ Relying solely on equity to finance the capital-intensive hydrogen project is not sufficient to achieve the scale needed to realise the full potential of the green hydrogen sector.

Source: Hydrogen Council, IRENA, Refinitiv

Key challenges in pursuit of green hydrogen economy (cont'd)

Limited infrastructure and facilities

- ▶ Transporting hydrogen for industrial use across different countries and region remains challenging as there are only about 5,000km of hydrogen transmission pipelines worldwide. More efforts are required in establishing infrastructure including terminals, large-scale storage, carriers, refueling station networks and etc. to enable cross-border trade.
- ▶ Storing hydrogen on construction sites require adequate space for large tanks. Regular maintenance is needed to prevent leakage and maximise the lifetime of the containers which would increase the production cost.
- ▶ Countries without existing natural gas networks which can be re-purposed for hydrogen are reluctant to invest in new infrastructure due to the high upfront cost.

Lack of technical and commercial standards

- ▶ To date, there is no clear internationally agreed codes and standards regarding safe construction, maintenance and operation of hydrogen facilities as well as the proper handling and transportation of hydrogen along the entire supply chain.
- ▶ While some countries are drafting their own regulations or guidelines as part of their effort to develop the hydrogen sector, different standards could potentially lead to carbon leakage especially at jurisdictions with laxer emission constraints and indirectly hamper the country's decarbonisation effort.
- ▶ Uncertainties will remain and users may remain skeptical of the use of green hydrogen in the absence of a well-established certification system as they are unable to accurately verify the origin or production method of hydrogen.

Overall sustainability

- ▶ Power supply to the electrolyser can be connected through a renewable energy plant, grid or a mix of both. Electrolytic hydrogen is considered to have lower overall emissions than grey hydrogen only when grid-powered electrolysis has an emission factor below 190 grams of CO₂ /kWh.
- ▶ The reduction of carbon emissions resulting from the use of hydrogen should be weighted against the additional emissions during the liquefaction and transportation process. Transporting hydrogen using trucks will most likely continue to use fossil fuels in the short term which can easily erode the carbon emissions reduction benefits.

Source: Hydrogen Council, IRENA, Refinitiv

Some of the hydrogen projects in other regions

Project Name	Brunei Project – Organic Hydrides Technology	Daesan Hydrogen-Fuel-Cell Power Generation	Sinopec Xinjiang Kuqa Green Hydrogen Pilot Project	Bécancour Green Hydrogen Plant
Project Promoters	<ul style="list-style-type: none"> Advanced Hydrogen Energy Chain Association for Technology Development (Japan alliances) Brunei Darussalam 	<ul style="list-style-type: none"> Hanwha Energy Korea East-West Energy Doosan Corporation Financial investors 	<ul style="list-style-type: none"> Sinopec 	<ul style="list-style-type: none"> Air Liquide Canada
District/ Country	Brunei Darussalam	Seosan, Korea	Xinjiang, China	Becancour, Canada
Completion Date	May 2020	June 2020	June 2023	January 2021
Goal & milestone	<ul style="list-style-type: none"> Realised the first international hydrogen supply chain using liquid organic hydrogen carrier Successfully shipped hydrogen for more than 4,000km inside containerised tanks to Japan 	<ul style="list-style-type: none"> Largest industrial hydrogen fuel cell power plant globally Hydrogen recycled from petrochemical manufacturing Annual production capacity of 50MW 	<ul style="list-style-type: none"> Powered by 300MW photovoltaic plant Annual green hydrogen output of 20,000 tonnes To reduce CO₂ emissions by 485,000 tons per annum 	<ul style="list-style-type: none"> Completed the first large-scale use of novel PEM technology Produce 8.2 tonnes of low-carbon hydrogen per day Reduction of 27,000 tons of carbon emissions per annum

Source: Various news articles


What can Malaysia learn from the other countries in hydrogen industry development?

Establish strong public-private and cross-border partnerships

- ▶ The full potential of hydrogen will not be realised without effective partnerships, between all those who can fund initiatives, implement regulation and provide technical know-how.
- ▶ For instance, Japan collaborated with Australia in developing a liquefied hydrogen supply chain with the first shipment of hydrogen by sea arriving at Kobe, Japan on 25 February 2022, paving the way for commercialisation.
- ▶ Forming multilateral partnerships with countries like Japan and Korea will allow Malaysian companies to build experience from the exchange of technical knowledge and accelerate technology deployment.

Identify highest value applications

- ▶ Policymakers should weigh carefully the current level of Malaysia's economic competitiveness when setting priorities for hydrogen applications given that many of the hydrogen technology would take years to reach commercial stage.
- ▶ One of the fastest way to increase hydrogen demand is to accelerate the shift to green hydrogen in industrial applications where hydrogen is already used, such as refining and the production of ammonia.
- ▶ By ramping up demand in existing industries which utilise hydrogen, it will enable economies of scale in production and lead to a wider deployment in other sectors, making the shift to green hydrogen more cost-effective.

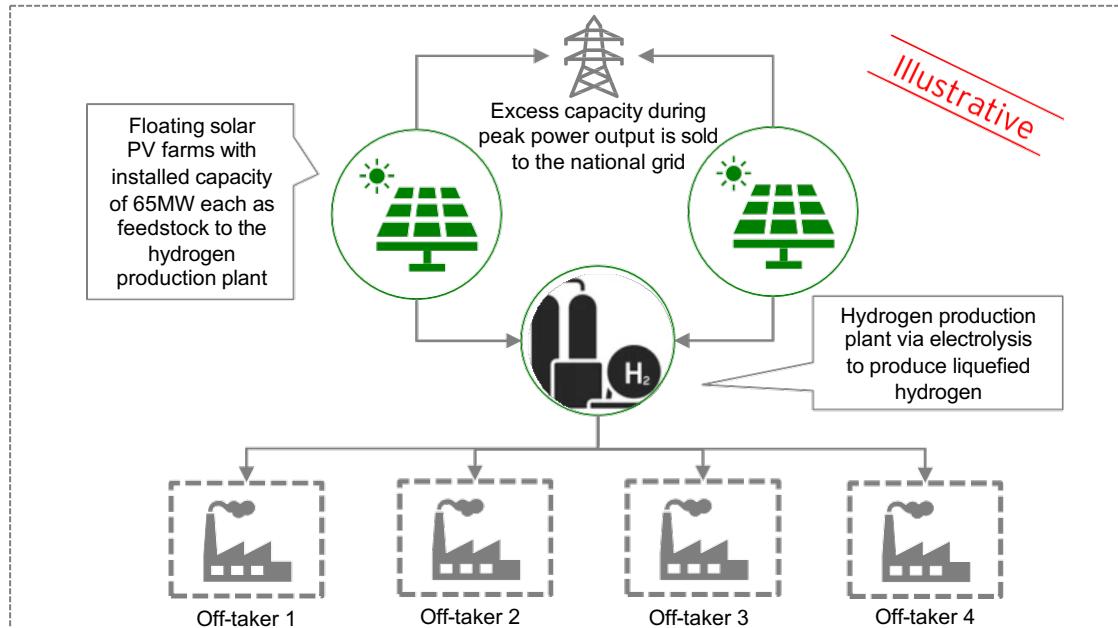
Scale-up electrolyser capacity

- ▶ Expanding electrolyser capacity is key to enabling green hydrogen to meet a significant share of energy demand in the future.
- ▶ Setting a realistic electrolyser capacity target will inform the private sector of the country's commitments and help attract investment.
- ▶ The cost of producing green hydrogen could be lowered by reducing the taxes on the electricity used by electrolyzers which will help improve revenues and rate of return on hydrogen projects.
- ▶ More resources need to be allocated for research on electrolysis technology to improve electrolyser efficiencies and standardise designs for large-scale electrolyzers to reduce electrolyser cost.

Clear industrial policy and regulation

- ▶ Unlike the European Union and Japan who have clearly defined hydrogen targets, Malaysia is still in the phase of designing its own hydrogen roadmap with many of the initiatives so far focused on research and development of the hydrogen technology.
- ▶ The government must establish a framework that will support early-stage projects, both in the areas of production and consumption as well as identification of hydrogen business models which will enable the highest decarbonisation possible at the lowest cost.
- ▶ It is also important that policymakers, where possible harmonise local standards with neighbouring countries and international standards to better reflect the environmental risk associated with hydrogen production, transport and use.

Section 3

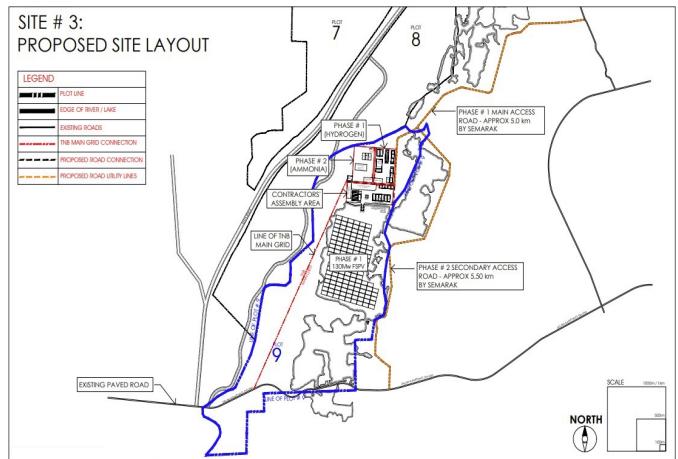
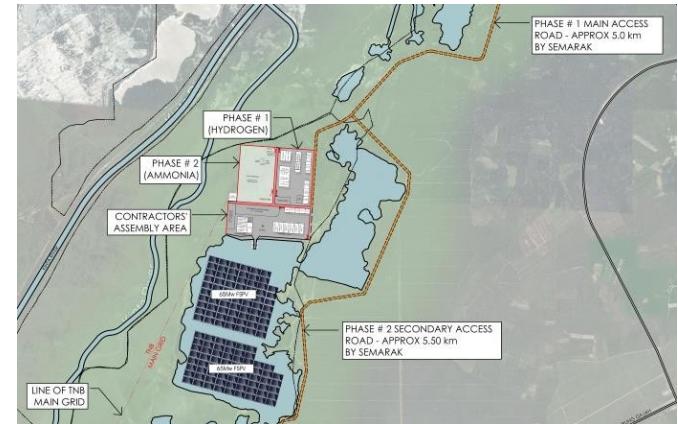

Project and company overview


Green hydrogen (H²) production via large scale electrolysis from renewable energy

What does the Project entail?

- ▶ The design, build and operation of an integrated complex comprising two (2) main facilities i.e. the green hydrogen production plant through the process of electrolysis from renewable energy and the floating solar PV farm.
- ▶ It serves as a hub in the District of Kampung Gajah, Perak for the production and distribution of green hydrogen to potential surrounding off-takers. The excess solar energy generated during peak power output is distributed to the national grid.

Where will Malaysia's first large scale green H² plant be located?

The Project location site and highlights

Location Highlights

- ▶ The targeted project site, i.e. Plot 9 is approximately 10km away from the Ipoh-Lumut Highway, located adjacent to the Kinta River.
- ▶ The existing infrastructure in place within the proximity of the targeted project site includes a PMU power sub-station just outside of Kampung Gajah and a railway station approximately 9km and 23km from the project site respectively.
- ▶ Paved road access to Plot 9 is available. However, new access roads of approximately 10km will be required to be constructed for direct access to the production site.
- ▶ The management and Transerve had jointly evaluated four (4) potential production site options within Plot 9 to construct the production facility using a multi-criteria assessment which is elaborated further in Section 4.
- ▶ Production site option no. 3 which is situated within Plot 9 is at the north of the South Lake ("SL") having an estimated surface area of 1.6 mil m². The solar PVs will be installed at the SL area with total installed capacity of 130MW.
- ▶ The built-up area at production site no.3 is estimated to occupy 50 hectares or 124 acres to accommodate two major facilities:
 - i. Hydrogen production facility; and
 - ii. Construction, staging and maintenance of solar PVs.

Project Site Plot No.9

Note: The above diagrams are further appended in Appendix A of this BIP

Strong project fundamentals and ideal location

The case for building a production facility in Kampung Gajah

1 Buy-in from the Perak State Government

The state of Perak believes that the hydrogen facility will be a **game-changing concept** that will represent a new source of clean energy.

2 Proximity to potential off-takers

Apart from TNB and Petronas, there are various mix of power plants in the immediate area of the Project site in Perak Tengah representing **potential off-take opportunities**.

3 Convenient grid connection

There is an **existing PMU main sub-station** located within 10km from the production site for grid connectivity.

4 Robust access via land-based logistics

The **current access allows for heavy vehicles** transporting 4 tons of H² at 200 bar. New connector roads of approximately 10km will be constructed to meet such requirements to link existing roads to the production site.

5 Located in industrial area away from residential area

Based on preliminary assessment of the production site area, management found no residential villages, indigenous or informal residents. As such, **no resettlement procedures** are required.

Ideal environmental condition, with large water body surface

Based on the management's and Transerve's preliminary analyses, the production site is ideal pursuant to the following conditions:

- ▶ Strong solar irradiation throughout the year averaging at 152.6 W/M² rendering the site ideal for solar power generation.
- ▶ The general project site on Plot 9 which is situated adjacent to the Kinta River may be susceptible to flood risk. However, the selected production site facility (i.e. site option no.3) is most resilient wherein flood risk is only imminent in the event of water level surge by 3.3m. A LIDAR site survey is critical to fully assess the impact of flood in this area.
- ▶ Large water body surface area of approximately 1.6 mil m² is present at the SL to contain the floating solar PV farm. The water source from the SL will be required as feedstock to produce green H². Based on initial testing results, the management and their technical advisor estimates that the expected water demand on a daily basis is 0.06% of the total available volume of water (i.e. 5.0 mil m³) at the SL. This will be further verified at a later stage via a detailed bathymetric survey during the hydrography survey.
- ▶ Water source from the lake is acceptable for use in the electrolysis process. Hydrogen production is moderately sensitive to the quality of water input considering two (2) main criteria:
 - i. **Iron content <1.0 mG/L** – The initial test samples had average values of 0.1005 mG/L and 0.0730 mG/L well within the required parameter; and
 - ii. **Total suspended solids <1.0 mG/L** – Whilst the initial test samples had average values of 5 mG/L and 17.5 mG/L which are larger than the required parameter, this is not unusual for freshwater lake. This can be mitigated with water treatment facilities to meet the required value.

Note: Detailed and extensive tests of the site will be conducted during the detailed site survey study.

Pioneering Malaysia's green H² production plant and contributing to Malaysia's green energy transition

The production plant will serve Malaysia's consumers and excess, if any, will serve external markets

- ▶ The production facility will become Perak's first green H² production plant as an alternative clean energy source.
- ▶ The production facility is estimated to produce 20 to 22 tonnes of green H² per day at full capacity as part of Phase 1 with the potential for further development:

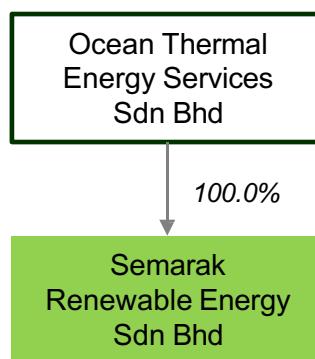
Development Plan	Target H ² Production	Installed Capacity	Off-taker Strategy
Phase 1 (2025)	22 tonnes per day or 7,200 tonnes per year	130MW	Gas fired power station
Phase 2 (2027)	22 tonnes per day or 7,200 tonnes per year	(on land if required)	Chemical, industrial or fertilizer plant
Total	14,400 tonnes per year	260MW	n/a

- ▶ In the event local demand from power plants in the immediate area is lower than the production volume as set out in the table above, surplus capacity, if any, will be considered for exports to other external markets such as China, Japan, South Korea and etc.

Large scale H² production and ongoing negotiations with potential off-takers

- ▶ SRESB is in active negotiations with TNB and Petronas as potential local off-take partners. The management and Petronas has further identified initial potential off-takers as summarised below:

Potential off-takers	Estimated demand
Natural gas power station - three (3) units, within 60km from production site	12 tonnes delivery daily
Chemical fertilizer plant – one (1) unit, within 100km from production site	8 tonnes delivery daily
Total	20 tonnes delivery daily


- ▶ Other potential off-takers identified in the immediate area of the Project in Perak Tengah include a gas district cooling plant and other biomass plants.
- ▶ The management is still in active negotiations with various parties, amongst others, TNB and Petronas, to collate a list of committed off-takers as required by PIRSB.

SRESB will be undertaking the Project based on the salient terms and conditions of the approval in-principle by PIRSB

Overview of SRESB

- ▶ SRESB, incorporated in June 2022 is a wholly-owned company by Ocean Thermal Energy Services Sdn. Bhd. with a paid-up capital of RM1.00 only.
- ▶ SRESB is principally involved in the installation of non-electric solar energy collectors.
- ▶ Omei Ayuni Binti Zakaria which is the shareholder and director of Ocean Thermal Energy Services Sdn. Bhd. is also appointed as the director of SRESB.

CURRENT GROUP STRUCTURE

Source: SSM and Experian

Salient terms and conditions of approval in-principle by PIRSB

- ▶ SRESB is required to increase its paid-up capital to RM10,000,000 within six (6) months from the date of the executed Development Agreement supported by the detailed and comprehensive funding mechanism.
- ▶ SRESB is required to enter into an agreement with Marubeni Corporation and Thyssenkrupp AG which act as the technology providers or any other equivalent technology providers to implement the Project within six (6) months from the date of the executed Development Agreement.
- ▶ SRESB is required to commence the production of green H² within twenty-four (24) months from the date of the executed Development Agreement and to provide a list of committed off-takers for the Project.
- ▶ SRESB is required to provide PKNP and PIRSB with the performance bond in respect of Phase 1 of the Project which is forfeitable in the event the terms and conditions are not met.
- ▶ 4% of the revenue generated annually is payable to PKNP or the Perak State Government.
- ▶ 1.5% of management fees is payable annually to PIRSB.
- ▶ Lease payments amounting to RM250,000 per annum for the land is payable to PIRSB upon the approval of lease being obtained from the Pejabat Tanah dan Galian (PTG) Negeri Perak.

As hands-on leaders, En. Mohd Shahil and En. Sufahmi Hadi oversees the Project and are supported by a passionate and experienced management team

Mohd Shahil bin Ishak
Managing Director – Semarak Group

- Bachelor's Degree in Engineering (Mechanical) from Universiti Teknologi Malaysia.
- Managing Semarak Group of Companies since 2013.

Zakaria bin Hassan
Project Director – Semarak Group

- Appointed as Project Director for Ocean Thermal Energy Services Sdn. Bhd. in 2017.
- More than 22 years of experience in the oil and gas industry in various regions.

Sufahmi Hadi bin Sjafii
CEO – OTES

- Appointed as Chief Executive Officer for Ocean Thermal Energy Services Sdn. Bhd. in January 2021.
- Previously appointed as CEO for Workboat International DMCCO (UAE) from 2015 as well as Chief Strategic Business and Planning and Chief Operating Officer for joint venture companies of Alam Maritim Group.

Nik Aznuddeen bin Husain
Project Director – OTES

- Appointed as Project Director for Ocean Thermal Energy Services Sdn. Bhd. in January 2021.
- Previously appointed as COO for Offshore Vessel Business Operations (OSVBO) in 2018.
- More than 27 years of experience in OSV contracts and operations, servicing major oil and gas client in the region.

Captain Maghzan Pin
COO - OTES

- Qualified Master Mariner (Unlimited) with more than 10 years in command experience on board MISC Berhad's vessels.
- More than 21 years of experience as a seafarer and in the oil and gas industry.

Qamaruzzaman bin Sairi
Managing Director – KMZ

- Bachelor's Degree in Electrical Engineering from Southern Illinois University USA.
- More than 15 years of experience in various industries, including manufacturing, oil and gas as well as telecommunication.

Section 4

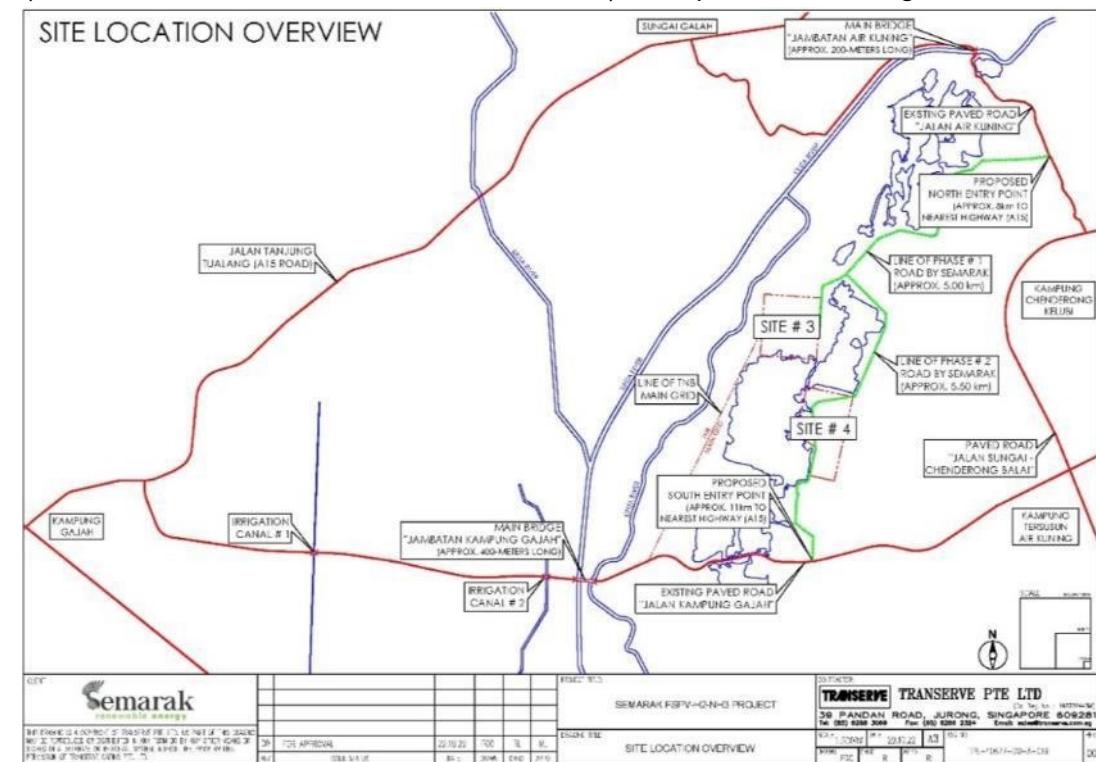
Preliminary technical assessment overview

Production site options assessment

Preliminary production site selection assessment

- As highlighted in the previous section, four (4) possible production site options were identified for the management's consideration. To shortlist the production site selection, the management together with Transerve had conducted a preliminary assessment on a high-level basis using the Prioritisation Matrix methodology.
- The high-level assessment considered the following primary criteria:
 - Exposure to flood hazard risk;
 - Distance of production site to the nearest existing paved road;
 - Inclusion of production site within the parameters of Plot 9;
 - Complexity of the design to construct new access road; and
 - Physical access to water body feature of the larger SL and smaller north lake.
- The summary of the scoring results based on the assessment is as set out below:

Option	Flood	Road	Plot 9	Design	Access	Total	Rating
Site 1	0.40	2.52	1.20	1.02	0.28	5.41	11%
Site 2	0.40	0.88	1.20	1.02	0.28	3.78	8%
Site 3	6.67	0.07	1.20	0.08	5.83	13.85	29%
Site 4	8.25	5.00	0.03	5.00	5.83	24.11	51%


Note: Detailed site survey which includes land survey, geodesic surveys, hydrologic surveys, hydrologic chemical analysis and etc. will be required to be conducted to confirm the above assessment.

- Whilst production site no. 4 yields the highest score, it is located out of Plot no. 9 and hence the next best option being considered is production site no. 3.

Site location overview

- Based on the scoring results, the management had shortlisted production site no. 3 (i.e. north of the SL and west of the north lake) as depicted in the diagram below.

Source: Front-end project outline (Volume 1) conducted by the management and Transerve

Environmental assessment of geophysical hazard (1/2)

The management and Transerve had further performed a high-level assessment of some environmental factors affecting the production site such as climate change impact, flood risk, solar radiance and geological considerations.

Climate Change Impact

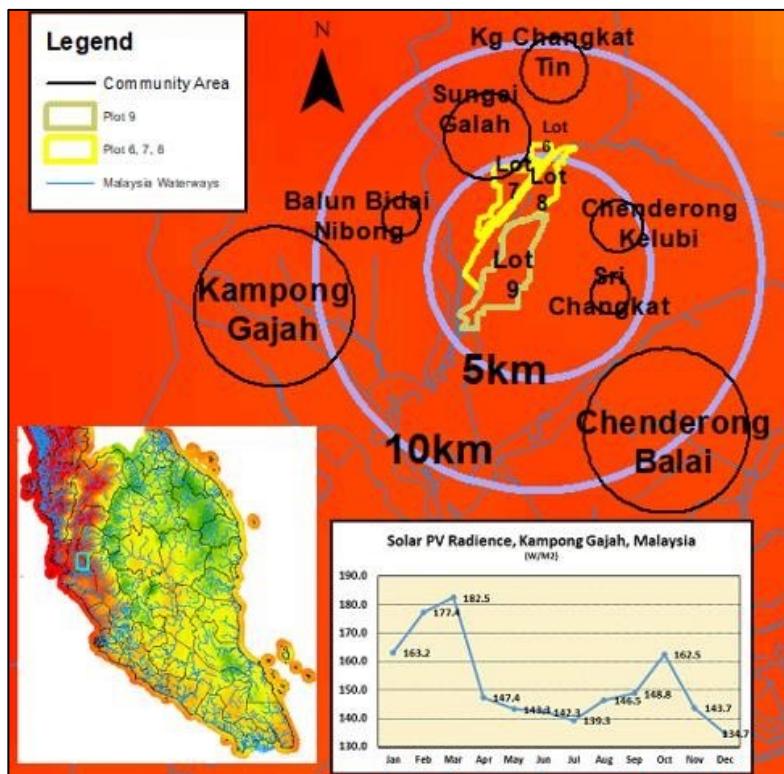
- ▶ In general, the weather in Kampung Gajah shows little variability in temperature and precipitation:
 - i. Annual maximum temperature between 31 and 33 degrees Celsius and minimum temperature between 23 and 24 degrees Celsius during the northeast monsoon season between October and December; and
 - ii. Annual precipitation averages at 864.8 mm in total but varies during the northeast monsoon season between October and December averaging at 125.5 mm per month.
- ▶ Located at the west of Peninsula Malaysia, the production site is protected from the worst typhoons travelling from the east coast towards the west. However, extreme weather events has become more common as a result of climate change which includes heavy rainfall.
- ▶ Malaysia is susceptible to natural hazards such as flood, landslide, haze, earthquake, drought, forest fire and tsunami. Flood events account for the most frequent and significant damage. The most recent flood event in December 2021 which normally affects the east coast has also affected the west coast. The Special Report on Impact of Floods in Malaysia 2021 published by the Department of Statistics Malaysia in January 2022 reported that the total value of flood losses suffered by Malaysia during the said period amounted to RM6 bil.
- ▶ Global mean sea-level rise is expected in the range of 0.4 m to 0.7 m by 2100 based on the Malaysia Climate Risk Country Profile published by the World Bank Group and Asian Development Bank in 2021.

- ▶ The management is of the view that, given that the general ground elevation is 6 m to 8 m, sea level-rise is not expected to impact the production site significantly.

Flood Risk

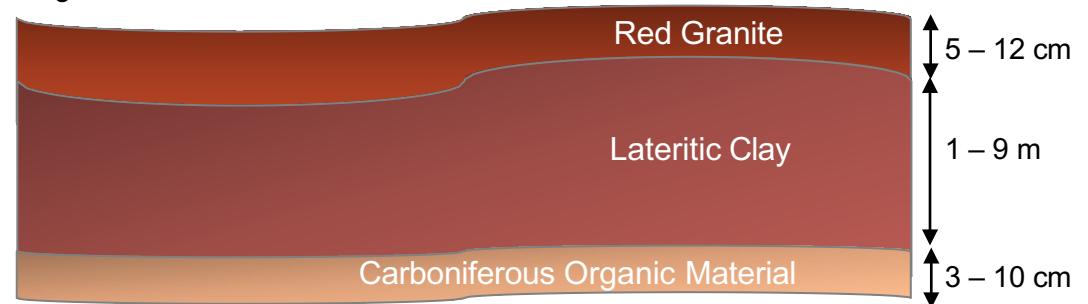
- ▶ Whilst Plot 9 was found to be susceptible to flooding as it is located adjacent to the Kinta River, production site option no. 3 is most resilient towards flood risk due to the absorptive nature of the lakes as potential buffers, unless water levels surge to 3.3 m as depicted in the diagrams below:

Water surge level of 1.0m Water surge level of 2.0m Water surge level of 3.3m


Source: Front-end project outline (Volume 1) conducted by the management and Transerve

- ▶ To further evaluate flood risk impact, a detailed site survey will be conducted. Management's plans to mitigate the risks of flood impact include the following:
 - i. H₂ plant and power substation will be raised 1.0 m above present ground level;
 - ii. Access roads will be raised 1.0 m above the present level; and
 - iii. Embankment to be built at areas of production site susceptible to flood risk.

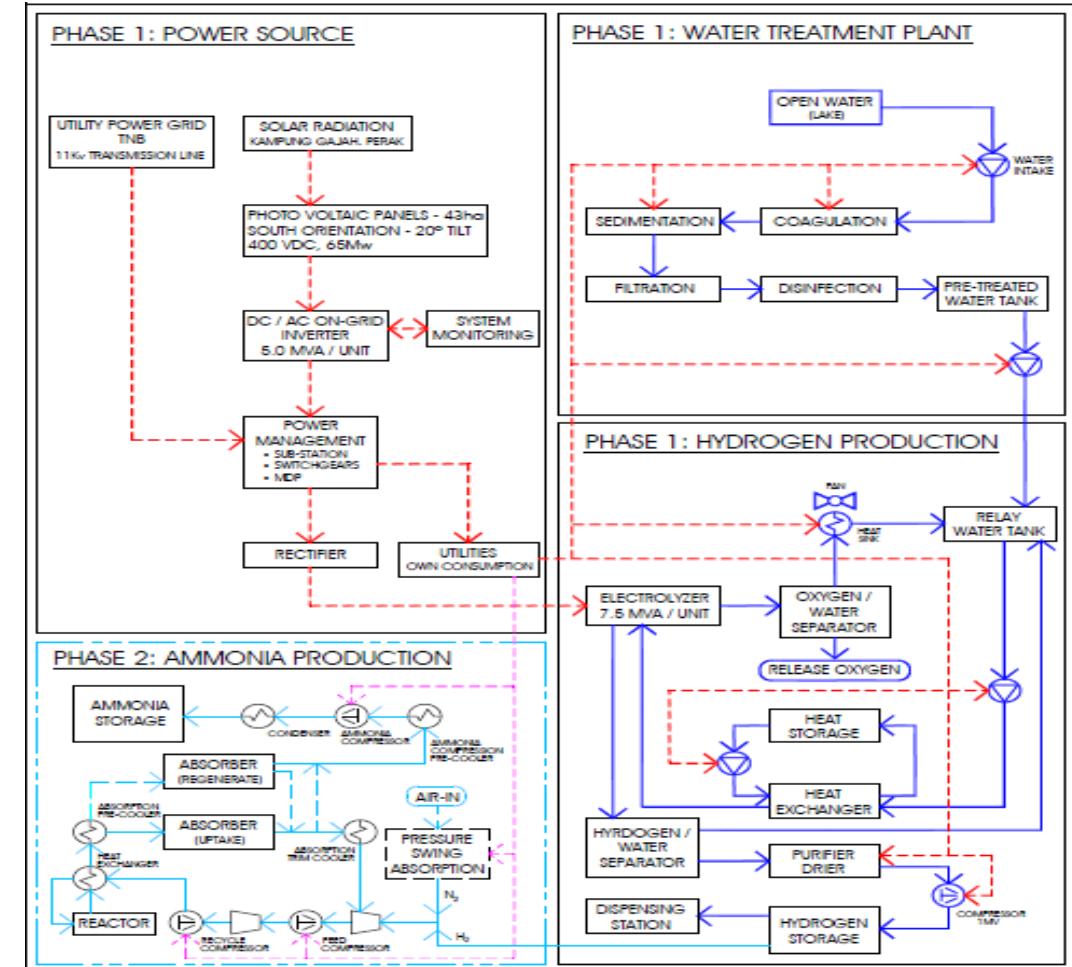
Environmental assessment of geophysical hazard (2/2)


Solar Radiance

- As shown in the diagram below, the management and Transerve observed that the location site demonstrates some of the strongest solar irradiation in Peninsular Malaysia. The annual average solar irradiation is 152.6 W/M² which is suitable for the generation of power from solar PVs.

Geological Considerations

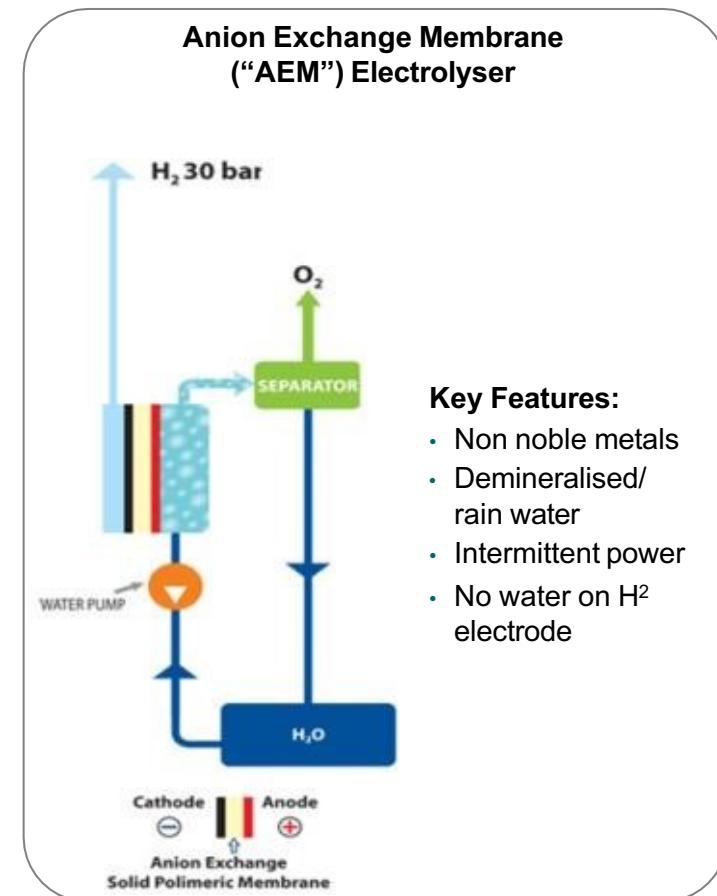
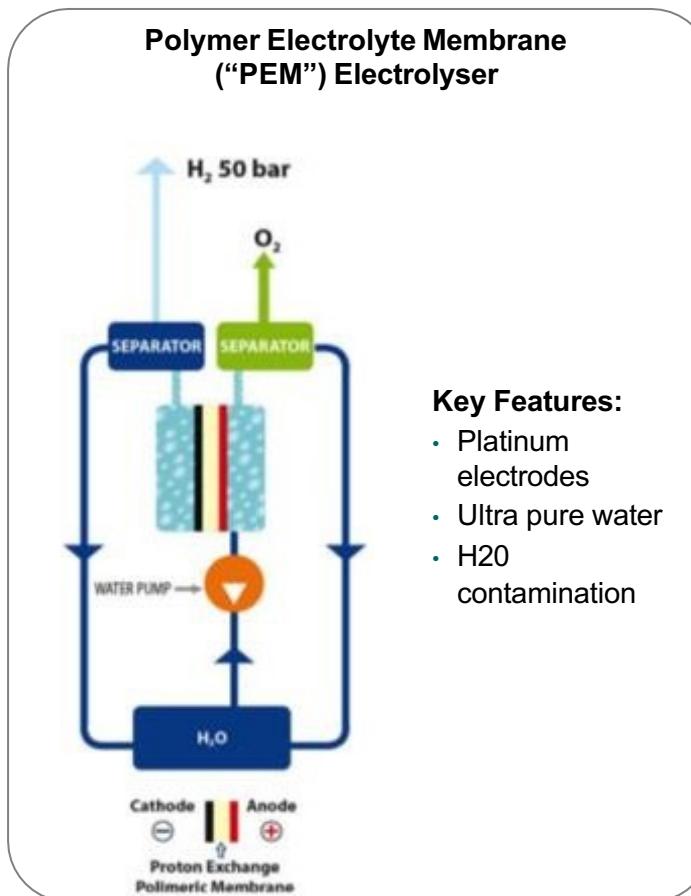
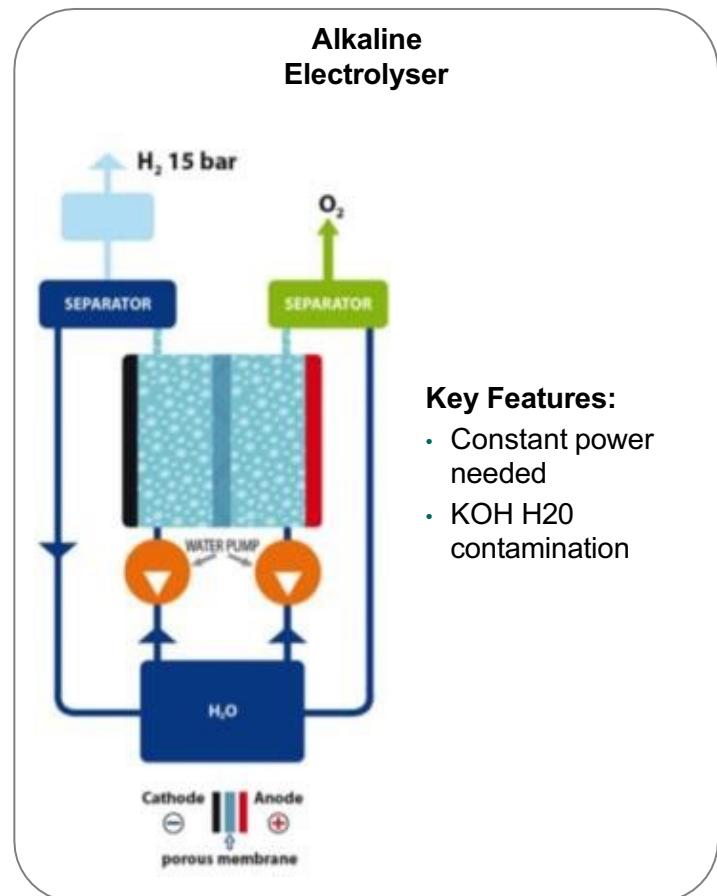
- The management and Transerve has also considered the geological condition of the site area. A detailed geotechnical survey will need to be conducted to assess the specific site condition in anticipation of the design and construct of the integrated complex.
- Based on preliminary studies and findings, the land surface contains a thin red cover layer containing different sizes of granite rocks and minerals with thickness of about 5.0 cm to 12.0 cm.
- The thin red cover is found over a layer of lateritic clay with different thickness between 1.0 m to 1.25 m, 2.0 m to 5.0 m and 6.0 m to 9.0 m.
- Another thin layer of carboniferous organic material is found beneath the lateritic clay with different thickness between 3.0 cm to 5.0 cm and 8.0 cm to 10.0 cm.
- The abovementioned materials contained at the production site is depicted in the diagram below:



- The management and Transerve do not anticipate major issues in respect of the geological condition of the production site.

Production facility process flow and diagram

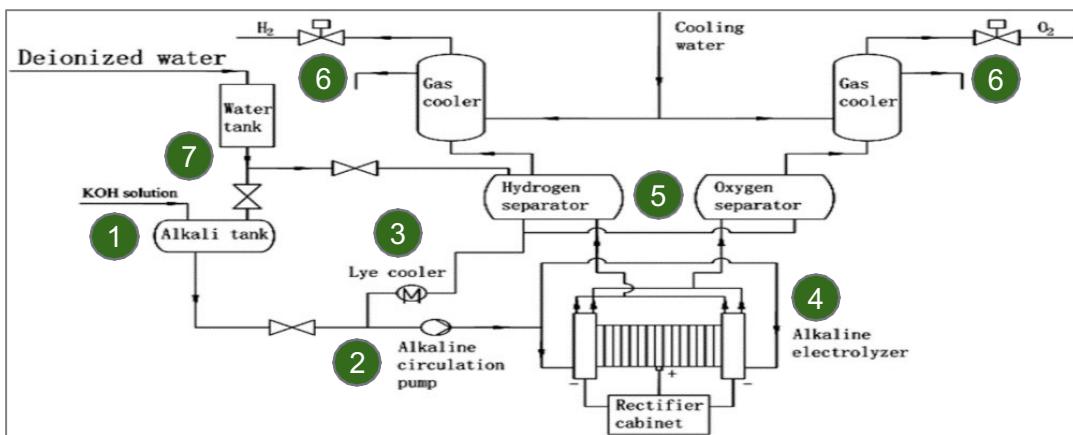
H² production plant process




- ▶ The green H² production plant requires input from the following two (2) main sources:
 - i. Power generation source via renewable energy from the national grid between 4pm and 8am as well as the 130MW floating solar PV farm between 8am and 4pm; and
 - ii. Water source from the lake which has been treated as feedstock for the electrolysis process.
- ▶ The management has shortlisted the technology to produce green H² based on Longi's Lhy-A1000 Alkaline Electrolyser module which is capable of producing 1,000Nm³/h or 89.5kg of green H².
- ▶ 12 units of the abovementioned alkaline electrolyzers will be installed together with three (3) units of gas-separators (LGS-4000), three (3) units of gas purifiers, and ancillary equipment to meet the production requirement of 22 tonnes per day.
- ▶ The production of green H² is expected to be delivered to the off-taker's location via land access using H² tube trailer trucks, each transporting four (4) tonnes of green H² at 200 bar.
- ▶ Additionally, storage vessel on site will be constructed to store at least two (2) days worth of green H² stock to ensure smooth and regular supply to the potential off-takers.
- ▶ The power generation and H² production process flow is shown in the adjacent block diagram.

Source: Front-end project outline (Volume 1) conducted by the management and Transerve

Hydrogen production technologies available today

- The technologies available today to produce green H² via water electrolysis at the scale required by the Project include the following:



Source: Front-end project outline (Volume 1) conducted by the management and Transerve

Alkaline water electrolysis is the most viable option today

How does alkaline water electrolysis work?

- The alkaline water hydrogen production device comprise three (3) parts as shown in the diagram below, i.e. alkaline water hydrogen production system, control cabinet and rectifier cabinet. The startup period is 5 to 30 minutes for a cold start.

Source: Front-end project outline (Volume 1) conducted by the management and Transverse

The case for alkaline electrolyser

Technology has reached maturity and is readily available in the market

Manufacturing cost is comparatively lower than the other alternatives i.e. PEM and AEM electrolyzers

Accommodate large-scale H₂ production-hydrogenation station required by the Project

- 1 Once the equipment is started, the electrolyte is evenly mixed in the alkali tank
- 2 Electrolyte is pressurized into the electrolytic tank via the pump to enter the entire H² production system
- 3 Once the liquid in the separator reaches the specified level, the lye inlet valve is closed, and power is turned on
- 4 Alkali solution is electrolysed in the alkaline electrolyser
- 5 H² and oxygen separator are respectively introduced from both the H² and oxygen side respectively in a gas-liquid mixed state
- 6 Gas is cooled from upper part of separator and discharged. Liquid merges into the bottom of the separator and circulates
- 7 Water is replenished into hydrogen separator and alkali solution into the alkali tank as the electrolysis process continue

However, the alkaline electrolyser technology has a slow start-up period, susceptible to corrosion, requires complex maintenance as there are multiple components. The management is identifying measures to mitigate these risks.

Power supply via renewable energy sources available to operate the hydrogen production plant

- ▶ The management has considered power supply via two (2) sources of renewable energy to ensure continuous production of green H² as set out below:
 - i. On-site floating solar PV located at the SL; and
 - ii. National grid supply of green electricity from TNB.
- ▶ To achieve the daily production target of 22 tonnes per day and ensure the continuous operation of the production plant, the energy supply of 66MW to 70MW per hour to the production plant is required and planned as follows:

Energy Sources	Hours per day	Total supply (MW)	Production per day (tonnes)
Floating Solar PV	8 hours (8am - 4pm)	530	9.5
National Grid	16 hours (4pm onwards)	700	12.5
Total	24 hours	1,230	22.0

Floating solar PV

- ▶ As highlighted in the previous page, solar irradiation at the production site is suitable for solar energy generation with PV panels set at an 85 degrees angle. The solar isolation figures at the production site for each month is as follows:

Description	Jan	Feb	Mar	Apr	May	Jun
Solar Isolation Figures	5.65	5.85	5.57	5.38	5.17	5.29
Description	Jul	Aug	Sep	Oct	Nov	Dec
Solar Isolation Figures	5.15	4.83	4.69	4.66	4.80	5.05

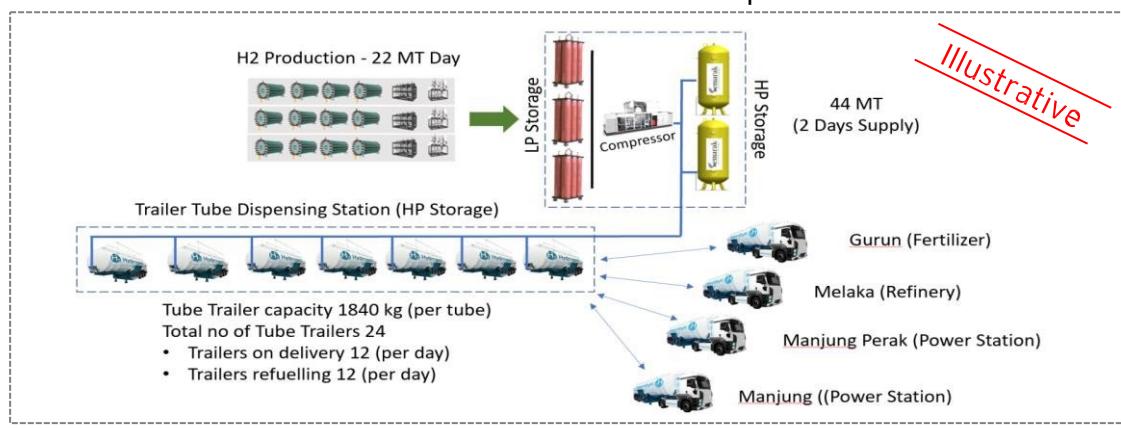
Source: Front-end project outline (Volume 1) conducted by the management and Transerve

- ▶ Based on the preliminary analysis conducted by the management and Transerve, the total installed capacity of 130MW will provide energy supply of 530MW per day over eight (8) hours. This is summarised below:

Description	8am	9am	10am	11am	12am	1pm	2pm	3pm
Energy supply required (Mw)	66.0	66.0	66.0	66.0	66.0	66.0	66.0	66.0
Power output via FSPV (Mw)	13.0	24.7	97.5	130.0	130.0	97.5	24.7	13.0
Excess/ (Shortfall) (Mw)	(53.0)	(41.3)	31.5	64.0	64.0	31.5	(41.3)	(53.0)
FSPV Usage	10%	19%	75%	100%	100%	75%	19%	10%

- ▶ To smooth out the floating solar PV production curve, the management plans to supplement the shortfall of power output through the purchase of green electricity from the national grid whilst excess energy generated during peak power output will be sold to the national grid.

National grid supply


- ▶ The supply of green electricity from the national grid may be required during the shortfall of power output as highlighted above and from 4 pm onwards.

Description	TNB Green Energy Tariff Rate
Peak hours (8.00 am to 9.59 pm)	RM0.78 per kWh
Off-peak hours (10.00 pm to 7.59 am)	RM0.65 per kWh

The approach on hydrogen transportation and storage

Compression, storage and distribution

- ▶ The H² gas output from the hydrogen production system will be in the range of 16 to 30 bar pressure and temporarily stored in a low pressure buffer tank ("LP Storage").
- ▶ To manage longer term storage and distribution of H² in the form of gas, the same has to be further compressed to 200 bar pressure and stored in high pressure vessels ("HP Storage"). To ensure uninterrupted supply and sufficient buffer, two (2) days of reserve H² aggregating 44 tonnes will be stored in the HP Storage.
- ▶ 40 feet flatbed trailers with HP hydrogen tube tanks will be used and refilled at a dispensing station which is connected by the same system to the HP Storage. When full, each trailer has a capacity to carry 1,840kg of H². The potential off-takers are located between 30km and 100km from the production site.

Trailer and hydrogen storage tank specification

- ▶ Approximately six (6) deliveries will be required each day to complete the delivery of 22 tonnes of H² daily. To optimise the process of parallel refilling and distributing H² to the off-takers' site, a total of 12 H² tube trailers is estimated to be required.
- ▶ Each 40 feet trailer specification is summarised below:

Description	Specification
Dimension (L x W x H)/ Weight	12,500 x 2,500 x 1,550 mm/ 5,600kg
Main Beam	"I" Section 500mm height Q345/T700 material
Twist Lock	4/8 set ISO Standard
Suspension	Mechanical/ Air/ Bogie
Axle	40's BPW/FUWA/PDME etc.
Rim/Tire	8/12 pieces 9.0-22.5 steel/aluminium – 12R22.5
Brake Valve/ Kingpin	WABCO/2'(50mm)/3.5'(90mm) JOST bolting type

- ▶ Each hydrogen storage tank specification is summarised below:

Description	Specification
Manufacturer/ Model	Sino Cleansky/ SCS 12-2450-H2-20
No. of tube/ H ₂ @ 50 or 200 bar	12/ 460kg or 1,840kg
Dimension (L x W x H)/ Nett Weight	4/8 set ISO Standard
Road transport compatibility	Construction Industry Development Board Malaysia

Risk management processes for successful and safe project delivery

- ▶ The management of SRESB is committed to identify, minimise and manage the risks in compliance with the Malaysia Department of Occupational Safety and Health ("DOSH") regulations.
- ▶ Hydrogen is a 2.1.1a class substance, i.e. it is a high-hazard flammable gas with the following key characteristics:
 - i. 14 times lighter than air and as such disperses upwards rapidly if released;
 - ii. Odourless;
 - iii. Non-toxic;
 - iv. Colourless flame when ignited; and
 - v. Produce minimal radiative heat when burnt.
- ▶ The management recognises that it is critical for sufficient controls to be put in place at the onset during the design phase to ensure risks associated with the Project are eliminated or reduced to as low as reasonably practicable ("ALARP").
- ▶ As such, SRESB will adopt the risk management process as depicted in the adjacent diagram no. 1. A detailed study prior to the construction will be conducted based on SRESB's risk management process.
- ▶ Per management, the risk management assessment will be focused on the production and storage of H₂ liquefied gas as the risk assessment for the floating solar PV will be provided by the vendor and reviewed by the management.
- ▶ The adjacent diagram no. 2 presents the hierarchy of controls commonly used by DOSH and has been adopted by SRESB. The approach sets out the requirements during the operations phase for inspection, testing and maintenance to ensure safeguards in place remain effective.

Source: Front-end project outline (Volume 1) conducted by the management and Transerve

Diagram 1

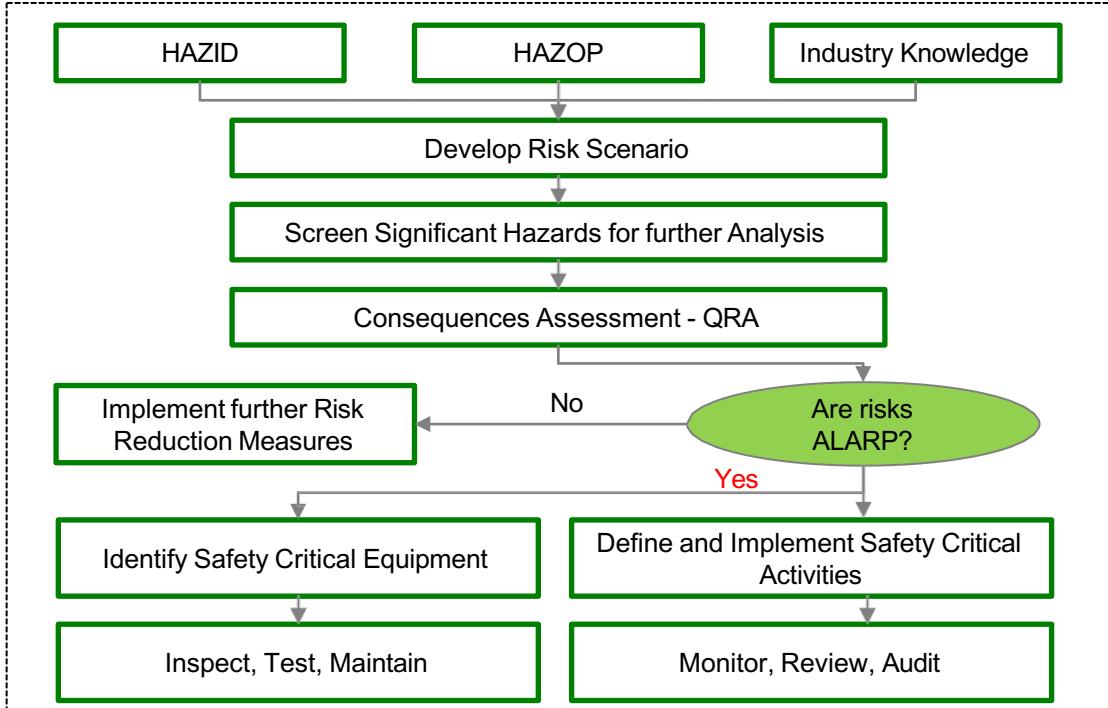
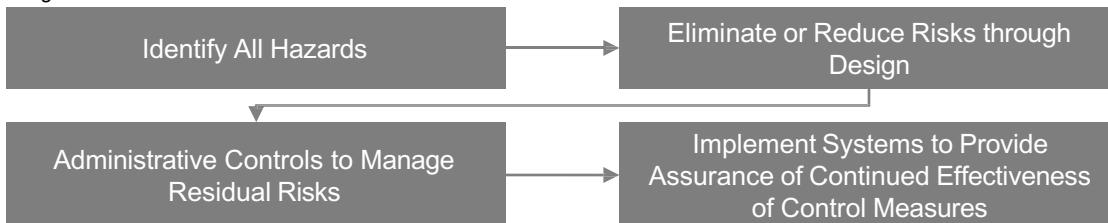



Diagram 2

Next steps in the Project execution plan towards completion of construction in 2025 (1/2)

- ▶ The management has successfully completed the design and commercial FEED which serves as a conceptual validation of the Project and high-level feasibility study of the Project.
- ▶ A detailed and final FEED will be conducted to assess various technical aspects and will be the basis upon which bidding for the engineering, procurement and construction of the Project commence.

Next steps forward...

Legal Permits

- ▶ The Project team will coordinate and seek all legal permits and/or clearances from the relevant authorities prior to commencing the procurement and construction to ensure compliance with regulatory requirements.

Investor and Off-taker

- ▶ The management is in negotiation with TNB which has expressed interest in funding the Project in full. The management is procuring the letter of interest or intent from TNB.
- ▶ The management is also in discussion with TNB being the potential off-taker for the hydrogen produced.

Final FEED

- ▶ The final FEED includes the detailed assessment and study of the various technical aspects of the Project to determine, amongst others, the approach, basis of design, risk mitigation plan, duration and schedule of the Project and etc.

Procurement

- ▶ The procurement stage includes the purchase of electrolyzers, floating solar PVs and other equipment which covers the logistic process from the approved vendor until delivered, received and inspected on site.

Fabrication

- ▶ The fabrication stage includes the site clearing process and also the construction of the plant including the access roads

Installation, Testing and Commissioning

- ▶ Upon completion of all civil works, the Project team will proceed with the facility equipment installation and pre-commissioning inspection will be performed.

Next steps in the Project execution plan towards completion of construction in 2025 (2/2)

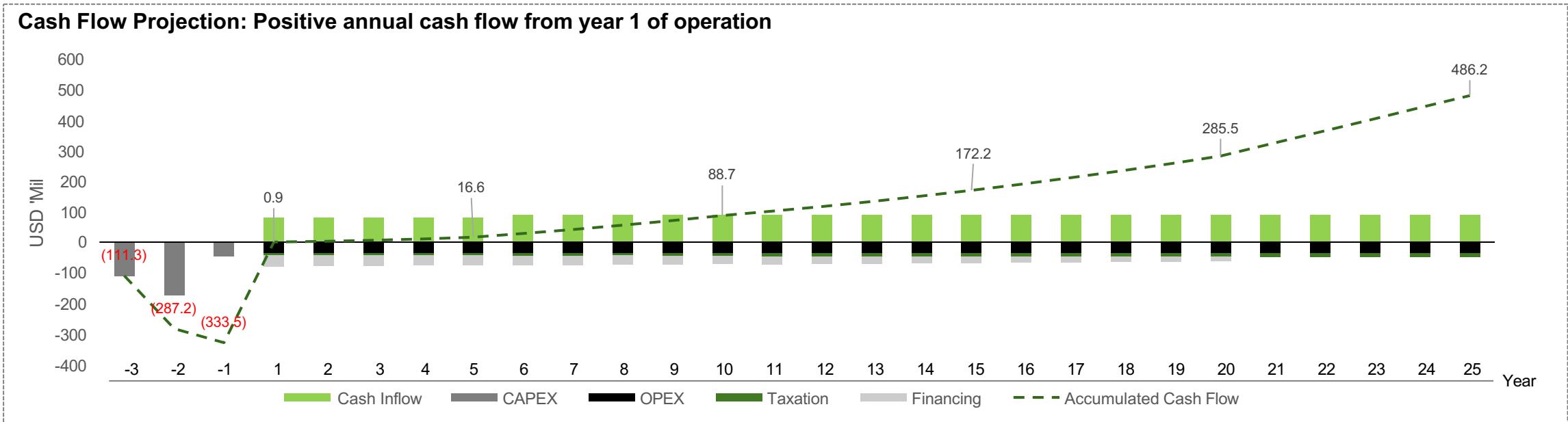
The Gantt chart illustrates the project timeline across four years (2022-2025). The activities are as follows:

- Operating Company Establishment:** Starts in August 2022, ends in December 2022.
- Design and Commercial FEED:** Starts in September 2022, ends in December 2022.
- FEED - Final:** Starts in January 2023, ends in April 2023.
- Local Authority:** Starts in January 2023, ends in April 2023.
- Investor and Off-taker:** Starts in January 2023, ends in April 2023.
- Procurement:** Starts in January 2023, ends in April 2023.
- Fabrication:** Starts in May 2023, ends in August 2023.
- Installation:** Starts in May 2024, ends in August 2024.
- Testing and Commissioning:** Starts in September 2024, ends in December 2024.

The engineering, procurement, construction and commissioning contractors as well as other service providers envisaged to be engaged by the management (1/2)

No.	Item Description	Service Providers/ Suppliers	Total Amount (USD)	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
1.0	<u>Preliminaries</u>					
1.1	Pre-operating expenses	SRESB	1,473,684	1,473,684	-	-
1.2	Pre-FEED (3 months)	Green Palm, Transerve, SRESB	624,006	624,006	-	-
Subtotal			2,097,690	2,097,690	-	-
2.0	<u>Engineering, Local Authority, Project Management, 3rd Party Services</u>					
2.1	Front-End Engineering Design	DNA, Transerve, BV, SRESB	2,874,168	977,217	948,476	948,475
2.2	Local Authorities/Government Permits/Licensure	SRESB	294,735	100,210	97,262	97,263
2.3	Project Management	Green Palm, Transerve, BV, SRESB	1,620,875	551,097	534,889	534,889
Subtotal			4,789,778	1,628,524	1,580,627	1,580,627
3.0	<u>Procurement</u>					
3.1	Floating Solar PV	Longi, Transerve	83,728,238	23,044,458	54,202,350	6,481,430
3.2	Electrolyser	Longi	22,705,850	12,953,255	4,541,170	5,211,425
3.3	Ammonia Plant	-	-	-	-	-
3.4	Other Equipment	Sino Hydro, Transerve	49,011,140	34,307,798	9,802,228	4,901,114
Subtotal			155,445,228	70,305,511	68,545,748	16,593,969

The engineering, procurement, construction and commissioning contractors as well as other service providers envisaged to be engaged by the management (2/2)


No.	Item Description	Service Providers/ Suppliers	Total Amount (USD)	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
4.0	<u>Logistics</u>	Sino Hydro, Transerve, SRESB	34,449,047	8,612,262	19,556,202	6,280,583
	Subtotal		34,449,047	8,612,262	19,556,202	6,280,583
5.0	<u>Site Construction Team</u>	Transerve, SRESB	4,698,948	1,174,737	2,042,527	1,481,684
	Subtotal		4,698,948	1,174,737	2,042,527	1,481,684
6.0	<u>Site Facilities</u>	Sino Hydro, Transerve, SRESB	15,000,000	4,500,000	9,750,000	750,000
	Subtotal		15,000,000	4,500,000	9,750,000	750,000
7.0	<u>Site Construction</u>	Transerve	25,000,000	7,500,000	16,250,000	1,250,000
	Subtotal		25,000,000	7,500,000	16,250,000	1,250,000
8.0	<u>Equipment Installation</u>	Transerve	51,604,900	15,483,470	28,370,840	7,750,590
	Subtotal		51,604,900	15,483,470	28,370,840	7,750,590
9.0	<u>Testing & Commissioning</u>	Transerve	4,663,357	-	-	4,663,357
	Subtotal		4,663,357	-	-	4,663,357
10.0	<u>Other Items</u>	SRESB	35,729,875	-	29,774,895	5,954,979
	Subtotal		35,729,874	-	29,774,895	5,954,979
Grand Total			333,478,822	111,302,194	175,870,839	46,305,789

Section 5

Financial overview

Attractive, long-term cash flow profile

Cash Outflows

- 1 CAPEX to construct the integrated complex
- 2 OPEX which includes all direct and indirect costs of construction and operation
- 3 Taxation payable for the year
- 4 Financing costs (i.e. principal and interest payments)

Cash Inflows

- 1 Revenue from the sale of hydrogen to off-takers
- 2 Revenue from the sale of excess solar power generated to the national grid

Basis of assumptions and the cash flow projection prepared by the management

Description	Basis of Assumption
Revenue from the sale of hydrogen	Revenue is generated from production and sale of hydrogen based on selling price of USD11/kg for the first five (5) years of production and USD12/kg for the remaining years (i.e. year 6 to year 25)
Revenue from the sale of excess solar power	Revenue is generated from excess solar power generated during peak power output and is sold through the feed-in electricity to the national grid during peak hours (i.e. daily from 10am to 2pm).
Staff salaries, manpower cost and administration cost	Assumed at a growth rate of 2% year-on-year
Maintenance cost	Assumed at 5% of the value of the assets to be maintained
Electricity charges and green energy tariff	Electricity charges are computed using the fixed rate from TNB under the E3s-Special Industrial Tariff category
Tariff to the State	The tariff payable to the Perak State Government is 4% of SPSB's annual revenue based on the letter dated 1 June 2022 issued by PIRSB to SPSB
Project consultancy fee	The management fees payable to PIRSB is 1.5% of SPSB's annual revenue based on the letter dated 1 June 2022 issued by PIRSB to SPSB
Lease of land/water	Annual lease payment of RM250,000 is payable to the Perak State Government based on letter dated 1 June 2022 issued by PIRSB to SPSB
Insurance premium	Insurance premium is estimated at 1% of the value of asset on a 4% depreciated value per annum
Director & advisors' fee	Assumed on a straight-line basis with no growth rate year-on-year

Description	Basis of Assumption
Financing costs	Interest is assumed at 8.5% with a repayment tenure of 20 years. Interest incurred during the construction phase is on cumulative principal sum drawn over 3 years during the construction period and is capitalised
Taxation	It is assumed that there are no tax exemptions applicable to SRESB throughout the entire operation period of 25 years

► The total cash inflow expected from the revenue generated via the sale of hydrogen and excess solar power sold through the feed-in-electricity to the national grid aggregate to USD2,181.4 mil over the operation period of 25 years.

► With the total direct and indirect costs aggregating USD901.0 mil, the net operating cash flow is estimated at USD1,010.4 mil representing 46% of the total cash inflow.

► The total net cash flow generated throughout the operation period of 25 years after financing costs amount to USD486.2 mil representing 22% of the total cash inflow.

Category	Value (USD million)
Total Cash Inflow	2,181.4
Total Direct and Indirect Cost	(901.0)
Taxation	(270.0)
Net Operating Cash Flow	1,010.4
Interest Expense	(247.2)
Principal Payment	(277.0)
Net Cash Flow	486.2

Annual revenue is estimated at USD81.6 mil from year 1 to year 5 and USD88.7 mil from year 6 onwards

Table 1: Sale of Hydrogen

Sale of Hydrogen	Year 1-5	Year 6-25
Production Capacity	20,292 kg/day	
No. of Working Days	350 days	
Total Production	7,102,200 kg/year	
Hydrogen Price	USD11.00	USD12.00
Annual revenue from sale of H²	USD78.1 mil	USD85.2 mil

Table 2: Excess Power from Solar

Excess Power from Solar	
Hours of Excess Solar per day	4 hours
Excess Capacity of Solar Power	61 MW
Total Excess Solar Power	244 MWh
Transmission Lost	5%
Total Excess Power for Sale	232 MWh
Feed-in Rate for Solar Power	USD42.53/MWh
Revenue from Solar Power/day	USD9,858
Number of Working Days	350
Annual Revenue from Solar Power	USD3.5 mil

- ▶ The revenue of SRESB comprise the sale of green hydrogen and sale of excess solar energy generated contributing an estimate of 96% and 4% of the total revenue projected respectively. This is illustrated in the adjacent tables.
- ▶ The sale of hydrogen is expected to contribute USD78.1 mil from year 1 to year 5 and USD85.2 mil from year 6 to year 25 based on the following assumptions:
 - i. Full production capacity of 20,292 kg per day (equivalent to 20 tonnes) over 25 years of operation; and
 - ii. Selling price of hydrogen is estimated at USD11 per kg from year 1 to year 5 and USD12 per kg from year 6 to year 25. Selling price is expected to increase by USD1 per kg as the management is of the view that selling price is on an uptrend due to the increasing global demand for green hydrogen.
- ▶ The sale of excess power from solar generation is expected to contribute USD3.5 mil per annum based on the following assumptions:
 - i. Excess solar power generated is 61 MW per hour during peak power output hours between 10am and 2pm;
 - ii. Total excess solar power for sale to the national grid is estimated at 232 MWh upon considering transmission loss at 5%. The detailed technical study and final FEED will be conducted to determine the actual excess solar power generated; and
 - iii. Based on discussion with the management, excess solar power generated is expected to be sold to the national grid based on the same rate of electricity charges by TNB which is assumed at USD42.53/MWh.
- ▶ The aggregate revenue over 25 years of operation is USD2,181.4 mil out of which USD2,095.1 mil or 96% is contributed by the sale of hydrogen while USD86.2 mil of 4% is contributed by the sale of excess power from the solar energy generated.

Annual direct costs are estimated between USD32.8 mil and USD33.5 mil

Table 3: Total Direct Costs

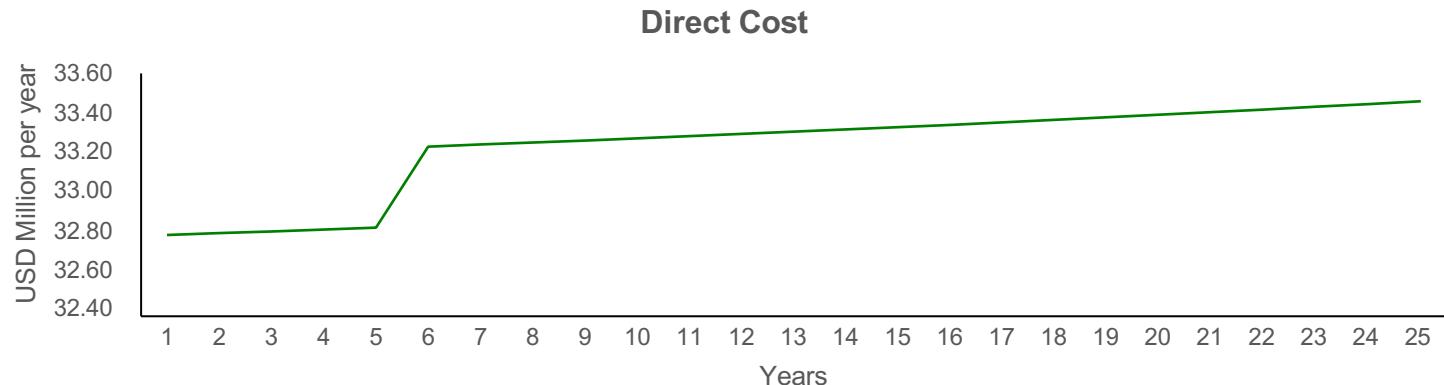
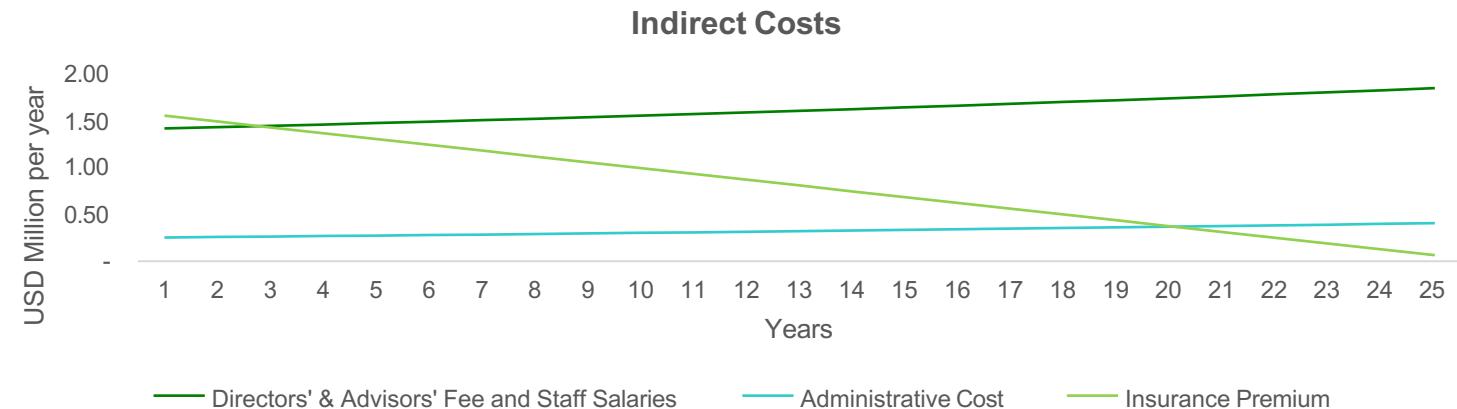

Description	Proportion (%)	USD' mil	USD' mil
Electricity charges	61 to 62	20.3	20.3
Maintenance cost	23 to 24	7.8	7.8
Tariff to the State	9 to 10	3.1	3.4
Project consultancy fee	4	1.2	1.3
Manpower cost	1 to 2	0.4	0.7
Total Direct Costs	100	32.8	33.5

Table 4: Electricity Charges

Description	USD'mil
Electricity charges per day	0.05
Number of working days	350
Total Electricity Charge	17.5

Table 5: Maintenance Cost

Description	USD'mil
Plant and equipment to be maintained	155.4
Percentage of maintenance cost	5%
Maintenance Cost	7.8

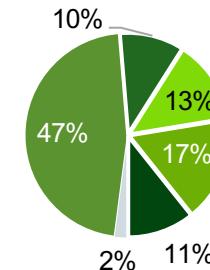


- ▶ The annual direct costs for the Project are estimated between USD32.8 mil and USD33.5 mil as summarised in the adjacent table.
- ▶ The direct costs for the Project are driven by the following costs which represent 84% to 86% of the annual direct costs:
 - Electricity charges (as shown in the adjacent table) amounting to RM20.3 mil annually representing 61% to 62% of the annual total direct costs. The electricity charges payable to TNB include electricity usage, green energy tariff and maximum demand charges; and
 - Maintenance cost for the plant and equipment amounting to USD7.8 mil annually representing 23% to 24% of the annual total direct costs. The maintenance cost is estimated at 5% of the total value of the plant and equipment required to be serviced and maintained.
- ▶ As shown in the graph above, the increase in the projected direct costs from year 6 onwards was mainly due to the increase in the annual revenue from the sale of hydrogen as a result of increase in price of hydrogen per kg from USD11 per kg to USD12 per kg. In particular, the direct costs which are driven by the Project revenue are tariff payable to the State and project consultancy fee payable to PIRSB based on the letter dated 1 June 2022 issued by PIRSB to SPSB.

Annual indirect costs (including taxation) are estimated between USD10.3 mil and USD15.5 mil

Table 6: Total Indirect Costs

Description	USD'mil	USD'mil
Directors' and advisors' fee	0.7	0.7
Staff salaries	0.7	0.9
Administrative cost	0.3	0.3
Lease of land/water	0.1	0.1
Insurance premium	1.3	0.9
Taxation	7.2	12.6
Total Indirect Costs	10.3	15.5


- ▶ The annual indirect costs (including taxation) for the Project are estimated between USD10.3 mil and USD15.5 mil as summarised in the adjacent table.
- ▶ The indirect costs for the Project are driven by the following costs which represent 82% to 87% of the annual direct costs:
 - i. Taxation payable to the Inland Revenue Board of Malaysia amounting between RM7.2 mil and RM12.6 mil which were estimated at 24% of taxable income based on the assumption that there are no tax exemptions applicable to SRESB; and
 - ii. Insurance premium amounting between RM0.9 mil and RM1.3 mil based on 1% of the book value of the plant and equipment after accounting for depreciation of 4% per annum using a straight-line depreciation method over 25 years.

The total capital expenditure for the Project is estimated at USD333.5 mil

Table 7: Total CAPEX

Description	Proportion (%)	Total (USD'mil)
Preliminaries	1%	2.1
Front-End Engineering Works	1%	4.8
Procurement of Floating Solar	25%	83.7
Procurement of Electrolysers	7%	22.7
Other Equipments	15%	49.0
Logistics	10%	34.5
Site Constructions and Facilities	13%	44.7
Equipment Installation	16%	51.6
Testing and Commissioning	1%	4.7
Other items	11%	35.7
Total CAPEX	100%	333.5

Capital Expenditure

- Preliminaries and Front End Engineering Works
- Procurements
- Logistics
- Site Constructions and Facilities
- Equipment Installation, Testing and Commissioning
- Other items

- ▶ The total capital expenditure for the Project is estimated at USD333.5 mil as summarised in the adjacent table.
- ▶ The capital expenditure for the Project is driven by the following costs which represent c.87% of the total capital expenditure:
 - i. Procurement of the plant and equipment aggregating USD155.4 mil or 47% of the total capital expenditure which comprise the floating solar PV plant, electrolyzers, electrical substation, networks and etc.;
 - ii. Equipment installation, testing and commissioning aggregating USD56.3 mil or 17% of the total capital expenditure;
 - iii. Site construction and facilities amounting to USD44.7 mil or 13% of the total capital expenditure. This is based on management's estimate. No quotation has been obtained given that the Project is at a preliminary stage.
 - iv. Logistics amounting to USD34.5 mil or 10% of the total capital expenditure which comprise the costs of the 40 feet trailers, freight costs, insurance costs, packing costs and etc..
- ▶ Please refer to Appendix B for further details.

The management anticipates to finance the costs of the Project which is estimated at a value of USD333.5 mil via 70% debt financing and 30% equity contribution

Table 8: Total Project Value

Description	Total
Total project value	USD333.5 mil
Equity %	30%
Equity Amount	USD100.0 mil
Financing %	70%
Financing Amount	USD233.5 mil

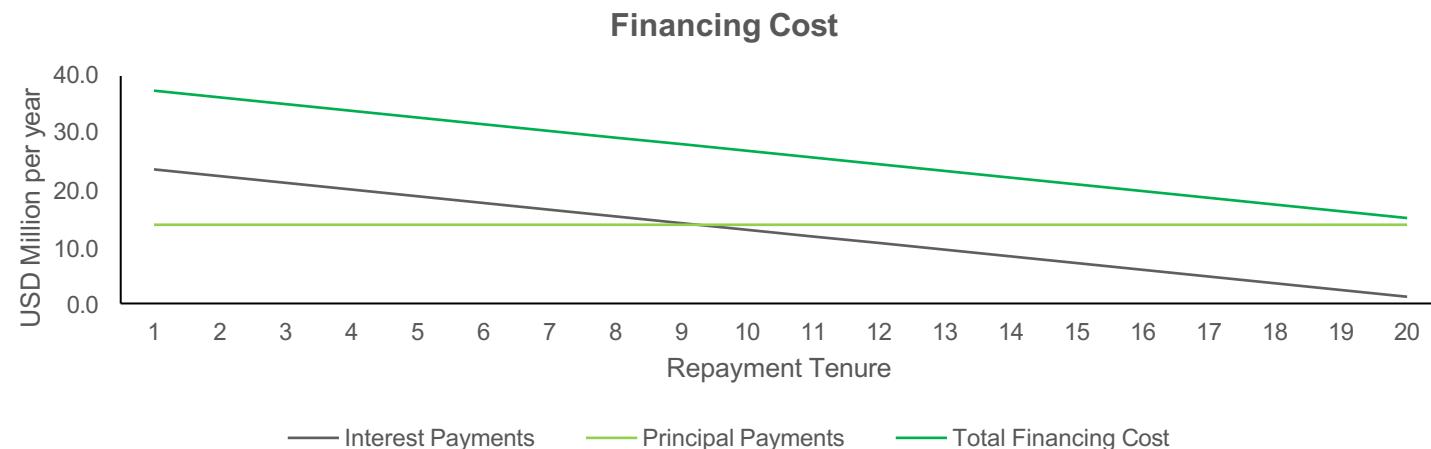
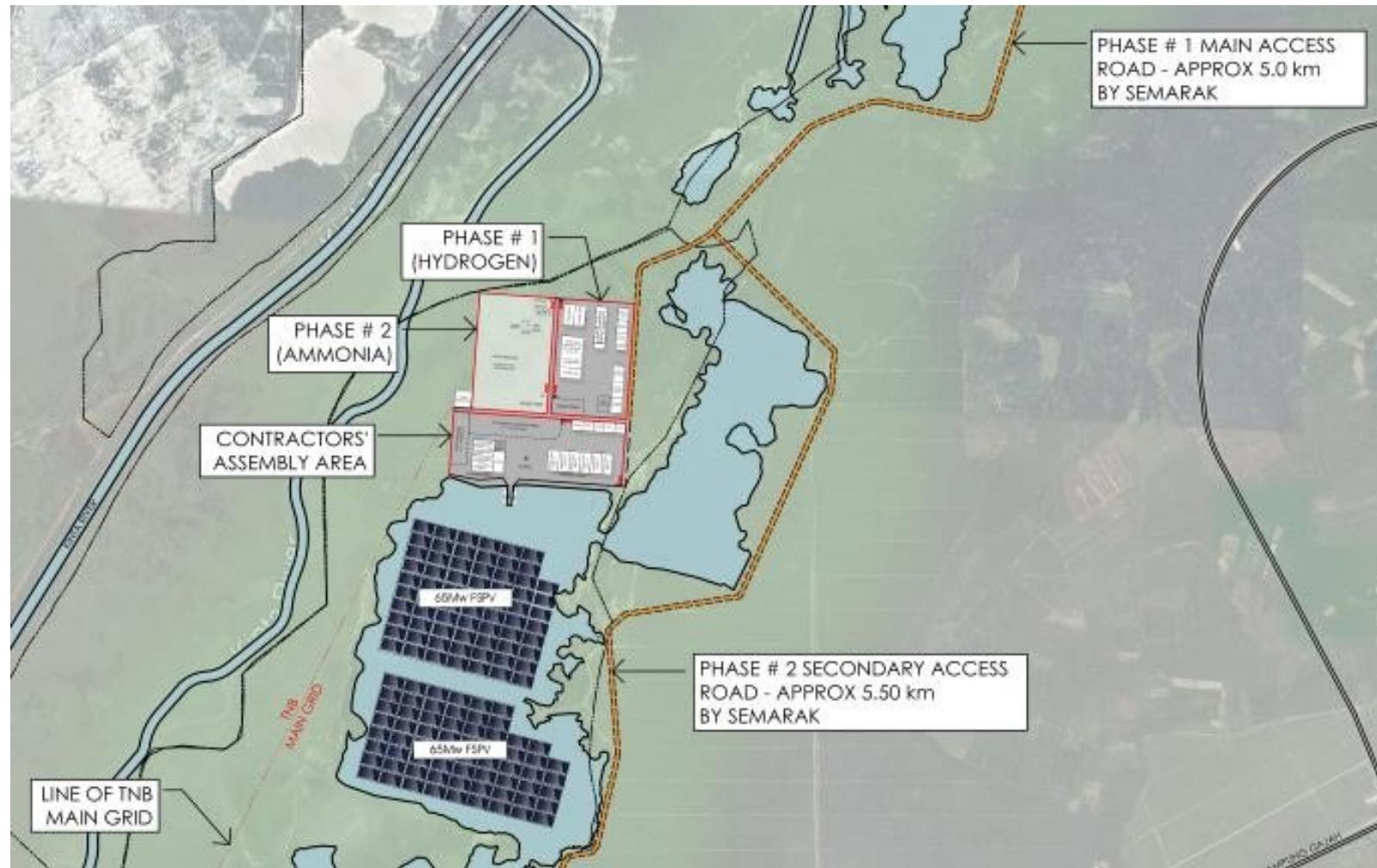


Table 9: Principal and Interest Payments

Description	Year 1 – 25 (USD'mil)
Cumulative Principal Over Construction Period	277.0
Interest Payments	247.2
Total Financing Cost	524.2

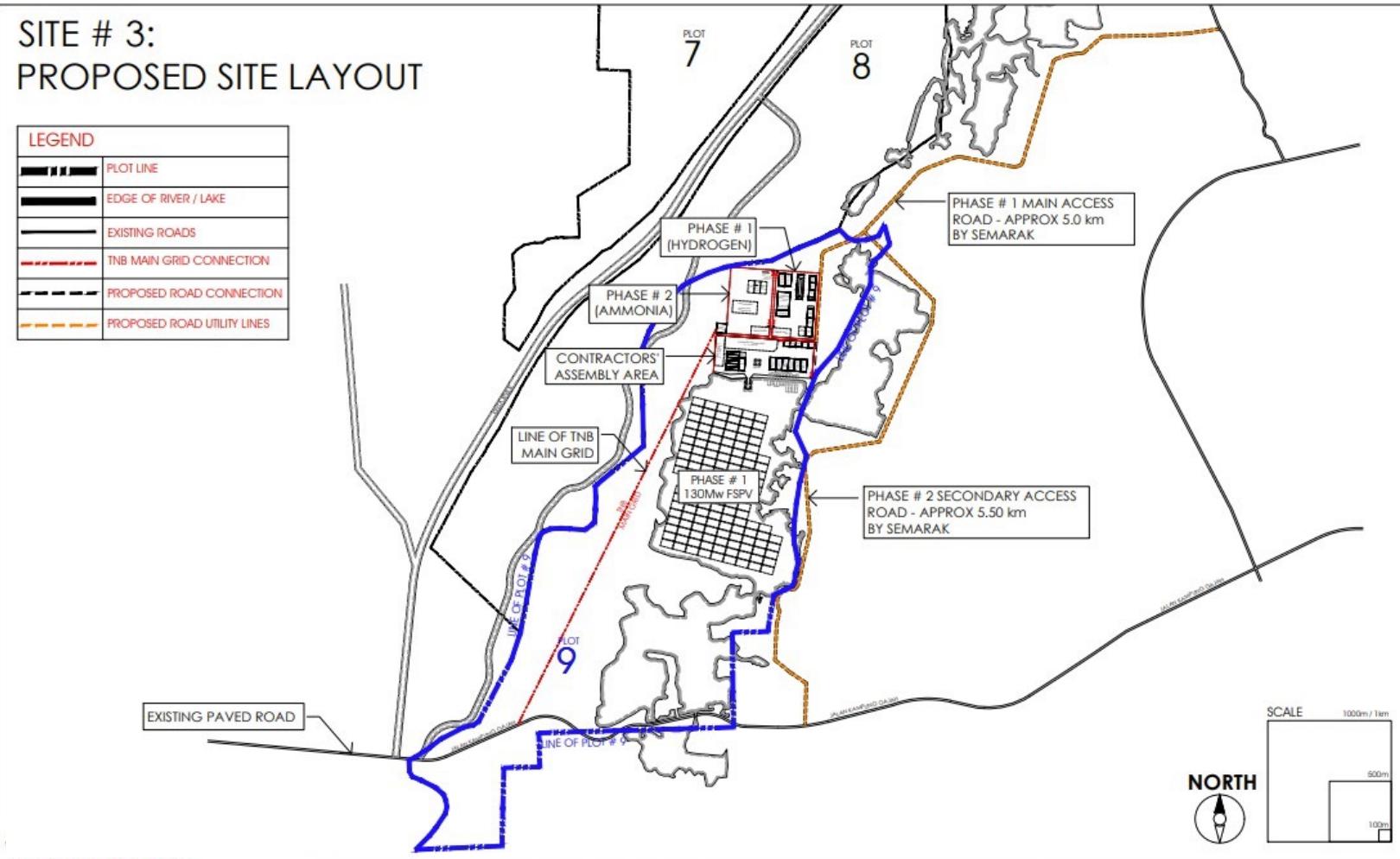
- ▶ The total project value is estimated at USD333.5 mil as summarised in the adjacent table which includes the procurement of plant and equipment, site construction, logistic costs as well as installation and commissioning of the integrated complex.
- ▶ Out of the estimated total project value of USD333.5 mil, USD100.0 mil or 30% will be financed via equity whilst USD233.5 mil or 70% will be financed via debt.
- ▶ The repayment tenure of the debt financing is estimated at 20 years bearing interest of 8.5% per annum. Interest incurred during the construction phase is capitalised in the principal amount and is based on cumulative principal sum drawn over the three (3) years during the construction period.
- ▶ The project is estimated to generate positive cash flow from year 1 onwards after including the financing cost (i.e., principal and interest payment). Please refer to Appendix C for the detailed cash flow projection.

Section 6


Appendices

Appendix A: Project Site Overview (1/4)

Appendix A: Project Site Overview (2/4)



Appendix A: Project Site Overview (3/4)

Appendix A: Project Site Overview (4/4)

SITE # 3: PROPOSED SITE LAYOUT

Appendix B: Engineering, procurement, construction and commissioning contractors (1/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
1.0	<u>Preliminaries</u>					
1.1	<u>Semarak Renewable Energy</u>					
	Company Management	210,526	Internal	210,526	-	-
	Operating Cost	1,263,158	Internal	1,263,158	-	-
1.2	<u>Pre-FEED (3 months)</u>					
	<u>Project Management Team (Green Palm)</u>					
	Project Manager	31,579	Green Palm	31,579	-	-
	Project Engineer	15,789	Green Palm	15,789	-	-
	Project Planner	9,474	Green Palm	9,474	-	-
	<u>QHSE</u>					
	QA/QC Manager	7,579	Green Palm	7,579	-	-
	Process Safety	11,368	Green Palm	11,368	-	-
	Document Controller	6,316	Green Palm	6,316	-	-
	<u>Admin</u>					
	Finance	28,421	Internal	28,421	-	-
	Engineering Support	513,480	Transerve	513,480	-	-
	Subtotal	2,097,690		2,097,690	-	-

Appendix B: Engineering, procurement, construction and commissioning contractors (2/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
2.0	<u>Engineering, Local Authority, Project Management, 3rd Party Services</u>					
2.1	<u>Front-End Engineering Design</u>					
	<u>Project Management Team (Green Palm)</u>					
	Project Manager	63,158	Internal	21,474	20,842	20,842
	Project Engineer	31,579	Internal	10,737	10,421	10,421
	Project Planner	18,947	Internal	6,442	6,252	6,253
	<u>QHSE</u>					
	QA/QC Manager	15,158	Internal	5,154	5,002	5,002
	Process Safety	22,737	Internal	7,731	7,503	7,503
	Document Controller	12,632	Internal	4,295	4,169	4,168
	<u>Admin</u>					
	Finance	56,842	Internal	19,326	18,758	18,758
	Process	31,579	Internal	10,737	10,421	10,421
	Electrical	31,579	Internal	10,737	10,421	10,421

Appendix B: Engineering, procurement, construction and commissioning contractors (3/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Instrumentation	31,579	Internal	10,737	10,421	10,421
	Mechanical & Piping	31,579	Internal	10,737	10,421	10,421
	Naval	31,579	Internal	10,737	10,421	10,421
	Civil	31,579	Internal	10,737	10,421	10,421
	Structural	31,579	Internal	10,737	10,421	10,421
	<u>Transerve Team</u>					
	Engineering Support	1,244,800	Transerve	423,232	410,784	410,784
	<u>Third Party Services</u>					
	Local Authority Liaison	37,895	Transerve	12,884	12,506	12,505
	Third Party Review (BV)	526,316	BV	178,947	173,685	173,684
	Social & Economic Impact Assessment	315,789	Transerve	107,368	104,211	104,210
	<u>Data Acquisition</u>					
	Boundary Site Survey	7,368	DNA	2,505	2,431	2,432
	Environmental Analysis	7,789	DNA	2,648	2,570	2,571
	<u>Weather Station</u>					
	Topography Survey (2D/3D Drone/LIDAR)	206,316	DNA	70,147	68,084	68,085

Appendix B: Engineering, procurement, construction and commissioning contractors (4/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Lake Bathymetric	78,947	DNA	26,842	26,053	26,052
	Environmental Report	6,842	DNA	2,326	2,258	2,258
	Subtotal	2,874,168		977,217	948,476	948,475
2.2	<u>Local Authorities/Government Permits/Licensure</u>					
	Suruhanjaya Tenaga	42,105	Internal	14,316	13,895	13,894
	SEDA	42,105	Internal	14,316	13,895	13,894
	TNB	42,105	Internal	14,316	13,895	13,894
	DOSH	42,105	Internal	14,316	13,895	13,894
	Lembaga Air Perak	42,105	Internal	14,316	13,894	13,895
	Majlis Daerah Batu Gajah	42,105	Internal	14,315	13,894	13,896
	Others	42,105	Internal	14,315	13,894	13,896
	Subtotal	294,735		100,210	97,262	97,263
2.3	<u>Project Management</u>					
	<u>Project Management Team (Green Palm)</u>					
	Project Manager	189,474	Green Palm	64,421	62,526	62,527

Appendix B: Engineering, procurement, construction and commissioning contractors (5/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Project Engineer	94,737	Internal	32,211	31,263	31,263
	Project Planner	56,842	Internal	19,326	18,758	18,758
	<u>QHSE</u>					
	QA/QC Manager	45,474	Internal	15,461	15,006	15,007
	Process Safety	68,211	Internal	23,192	22,509	22,510
	Document Controller	37,895	Internal	12,885	12,505	12,505
	<u>Admin</u>					
	Finance	85,263	Internal	28,989	28,137	28,137
	Procurement Officer	45,474	Internal	15,461	15,006	15,007
	Expeditor	25,263	Internal	8,589	8,337	8,337
	Logistic Officer	25,263	Internal	8,589	8,337	8,337
	<u>Engineering Team</u>					
	Process	94,737	Transerve	32,210	31,264	31,263
	Electrical	94,737	Transerve	32,210	31,264	31,263
	Instrumentation	94,737	Transerve	32,210	31,264	31,263
	Mechanical & Piping	94,737	Transerve	32,211	31,264	31,262
	Naval	94,737	Transerve	32,211	31,263	31,263

Appendix B: Engineering, procurement, construction and commissioning contractors (6/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Civil	94,737	Transerve	32,211	31,263	31,263
	Structural	94,737	Transerve	32,211	31,263	31,263
	<u>Transerve Team</u>					
	Engineering Support	35,399	Transerve	12,035	11,682	11,682
	<u>Third Party Services</u>					
	Local Authority Liason	37,895	Transerve	12,885	12,505	12,505
	Third Party Review (BV)	210,526	BV	71,579	69,473	69,474
	Subtotal	1,620,875		551,097	534,889	534,889
3.0	<u>Procurement</u>					
3.1	<u>Floating Solar PV</u>					
	PV Module	36,495,550	Longi	8,393,976	26,276,796	1,824,777
	Floater	22,205,300	Longi	5,107,219	14,944,167	2,153,914
	Inverter & Box Transformer	6,912,100	Longi	1,589,783	4,631,107	691,210
	Cable & Accessories	4,658,550	Longi	1,071,467	3,121,229	465,855
	Other Equipment for Plant	3,539,250	Not provided	814,027	2,371,298	353,925
	Substation Equipment	5,000,000	Not provided	2,625,744	1,874,256	500,000
	Batteries	-		-	-	-

Appendix B: Engineering, procurement, construction and commissioning contractors (7/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Anchoring System	737,100	Transerve	515,970	147,420	73,710
	Concrete Deadweight, used for anchoring & mooring system	1,816,100	Transerve	1,271,270	363,220	181,610
	Feeder Cables, Earthing and Mounting accessories	2,364,288	Not provided	1,655,002	472,857	236,429
	Subtotal	83,728,238		23,044,458	54,202,350	6,481,430
3.2	<u>Electrolyser</u>					
	Electrolyser – LA-1000	14,004,000	Longi	6,861,960	2,800,800	4,341,240
	Gas-liquid separation unit LGS-4000	2,660,100	Longi	1,862,070	532,020	266,010
	Gas Purification unit – LGPU-4000	2,069,000	Longi	1,448,300	413,800	206,900
	Electrical Equipment – supplied by Longi	2,034,000	Longi	1,423,800	406,800	203,400
	Process Auxiliary Equipment – supplied by Longi	1,938,750	Longi	1,357,125	387,750	193,875
	Subtotal	22,705,850		12,953,255	4,541,170	5,211,425
3.3	<u>Ammonia Plant</u>					
	Ammonia Systhesis Plant	-		-	-	-

Appendix B: Engineering, procurement, construction and commissioning contractors (8/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
3.4	<u>Other Equipment</u>					
	Water Treatment Plant	600,000	Transerve	420,000	120,000	60,000
	<u>E&I</u>					
	33kV TNB Transformation & Substation (OFFSITE)	10,000,000	Transerve	7,000,000	2,000,000	1,000,000
	Hydrogen Plant 33/11kV to 11kV/0.400-0.23kV Receiving Substation (ONSITE)	13,116,850	Transerve	9,181,795	2,623,370	1,311,685
	LV Distribution System	968,181	Transerve	677,727	193,636	96,818
	Fire Fighting/Safety Equipment	31,481	Transerve	22,037	6,296	3,148
	Perimeter Lighting	3,529,000	Transerve	2,470,300	705,800	352,900
	Lightning Protection System	1,102,812	Transerve	771,967	220,562	110,281
	Earthing System	4,411,250	Transerve	3,087,875	882,250	441,125
	Security/CCTV/FLIR & Alarm	1,840,426	Transerve	1,288,299	368,086	184,043
	<u>Other Items</u>					
	Hydrogen Compressors, Meters, Dispenser	9,411,140	Transerve	6,587,798	1,882,228	941,114

Appendix B: Engineering, procurement, construction and commissioning contractors (9/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Buffer tank & High pressure storage	4,000,000	Sino Hydro	2,800,000	800,000	400,000
	Subtotal	49,011,140		34,307,798	9,802,228	4,901,114
4.0	<u>Logistics</u>					
	40' Container, 8 tube @20MPa	3,360,000	Sino Hydro	840,000	1,680,000	840,000
	Packing & Tagging	3,886,131	Transerve	971,533	1,943,066	971,532
	Ocean Freight Cost	3,886,131	Internal	971,533	1,943,066	971,532
	Freight Insurance	3,886,131	Internal	971,533	1,943,065	971,533
	Import Tax/Sales tax	15,544,523	Internal	3,886,131	10,103,940	1,554,452
	Port Clearance & Local Transport to Site	3,886,131	Internal	971,532	1,943,065	971,533
	Subtotal	34,449,047		8,612,262	19,556,202	6,280,583
5.0	<u>Site Construction Team</u>					
	Site Management Team	1,136,842	Transerve	284,211	397,895	454,736
	Supervisors	454,737	Internal	113,684	159,158	181,895
	Technicians	454,737	Internal	113,684	159,158	181,895

Appendix B: Engineering, procurement, construction and commissioning contractors (10/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Workers	2,652,632	Internal	663,158	1,326,316	663,158
	Subtotal	4,698,948		1,174,737	2,042,527	1,481,684
6.0	<u>Site Facilities</u>					
	Site Offices, Security, HSE, First Aid	No breakdown provided	Internal	-	-	-
	Workers Camp c/w shower and toilet	No breakdown provided	Internal	-	-	-
	Excavator, Loaders, Tipper Trucks	No breakdown provided	Internal	-	-	-
	Welders, Air Compressor, Pumps	No breakdown provided	Sino Hydro	-	-	-
	Ready mix concrete, pumps	No breakdown provided	Transerve	-	-	-
	Crawler Cranes (various)	No breakdown provided	Transerve	-	-	-
	Vibro-piling Hammers	No breakdown provided	Transerve	-	-	-
	Scaffolding, NDT Lab	No breakdown provided	Transerve	-	-	-
	Workboat, Pontoons, Jetty, Launch Way	No breakdown provided	Transerve	-	-	-

Appendix B: Engineering, procurement, construction and commissioning contractors (11/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Utilities: Power, Water, Communication	No breakdown provided	Transerve	-	-	-
	Subtotal	15,000,000		4,500,000	9,750,000	750,000
7.0	<u>Site Construction</u>					
	Resettlement, Site Clearing	No breakdown provided	Transerve	-	-	-
	Temporary Access, Disposal, Earthwork	No breakdown provided	Transerve	-	-	-
	Perimeter Fence, Gate, Guardhouse	No breakdown provided	Transerve	-	-	-
	Roads, Drains (5km)	No breakdown provided	Transerve	-	-	-
	Foundation (Trailer Park, Loading Bay, Carpark)	No breakdown provided	Transerve	-	-	-
	Building (Office, Warehouse, Sheds, Loading Bay)	No breakdown provided	Transerve	-	-	-
	Subtotal	25,000,000		7,500,000	16,250,000	1,250,000
8.0	<u>Equipment Installation</u>					
	<u>Specialist Vendor</u>					
	FSPV System	13,974,900	Transerve	4,194,470	4,577,840	5,202,590

Appendix B: Engineering, procurement, construction and commissioning contractors (12/12)

No.	Item Description	Total Amount (USD)	Suppliers	Year -3 (USD)	Year -2 (USD)	Year -1 (USD)
	Electrolyser	750,000	Transerve	225,000	450,000	75,000
	<u>Other Items</u>					
	Electrical Substation	10,500,000	Transerve	3,150,000	6,615,000	735,000
	Network (Pipe Rack & Cable tray)	18,000,000	Transerve	5,400,000	11,700,000	900,000
	Water Treatment	180,000	Transerve	54,000	108,000	18,000
	Electrolyser	8,200,000	Transerve	2,460,000	4,920,000	820,000
	Subtotal	51,604,900		15,483,470	28,370,840	7,750,590
9.0	<u>Testing & Commissioning</u>					
	Testing & Commissioning	4,663,357	Transerve	-	-	4,663,357
	Subtotal	4,663,357		-	-	4,663,357
10.0	<u>Other Items</u>					
	Insurance	5,954,979	Internal	-	3,572,987	2,381,992
	Contingencies	29,774,895	Internal	-	26,201,908	3,572,987
	Subtotal	35,729,874		-	29,774,895	5,954,979
	Total	333,478,822		111,302,194	175,870,839	46,305,789

Appendix C: Detailed Cash Flow Projection Until Year 25 (1/3)

Item Description / USD mil'	Year -3	Year -2	Year -1	Year 1	Year 2	Year 3	Year 4	Year 5
Revenue from Hydrogen	-	-	-	78.1	78.1	78.1	78.1	78.1
Revenue from Solar	-	-	-	3.5	3.5	3.5	3.5	3.5
Total Revenue	-	-	-	81.6	81.6	81.6	81.6	81.6
Maintenance Cost	-	-	-	(7.7)	(7.7)	(7.7)	(7.7)	(7.7)
Manpower Cost	-	-	-	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Tariff to State	-	-	-	(3.1)	(3.1)	(3.1)	(3.1)	(3.1)
Project Consultancy Fee	-	-	-	(1.2)	(1.2)	(1.2)	(1.2)	(1.3)
Electricity and Green Energy Charges	-	-	-	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)
Total Direct Cost	-	-	-	(32.8)	(32.8)	(32.8)	(32.8)	(32.9)
Director's & Advisors' Fee and Staff Salaries	-	-	-	(1.4)	(1.4)	(1.4)	(1.5)	(1.5)
Administrative Cost	-	-	-	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Insurance Premium	-	-	-	(1.5)	(1.5)	(1.4)	(1.4)	(1.3)
Lease of Land/Water	-	-	-	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Taxation	-	-	-	(7.2)	(7.2)	(7.2)	(7.2)	(7.2)
Total Indirect Cost	-	-	-	(10.5)	(10.5)	(10.4)	(10.5)	(10.4)
Net Cash Flow from Operating Activities	-	-	-	38.3	38.3	38.4	38.3	38.3
Principal Repayments	-	-	-	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)
Interest Payments	-	-	-	(23.6)	(22.4)	(21.2)	(20.0)	(18.8)
Net Cash Flow from Financing Activities	-	-	-	(37.4)	(36.2)	(35.0)	(33.8)	(32.6)
Capital Expenditure	(111.3)	(175.9)	(46.3)	-	-	-	-	-
Net Cash Flow	(111.3)	(175.9)	(46.3)	0.9	2.1	3.4	4.5	5.7

Appendix C: Detailed Cash Flow Projection Until Year 25 (2/3)

Item Description / USD mil'	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	Year 15
Revenue from Hydrogen	85.2	85.2	85.2	85.2	85.2	85.2	85.2	85.2	85.2	85.2
Revenue from Solar	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.4	3.4
Total Revenue	88.7	88.6	88.6							
Maintenance Cost	(7.8)	(7.8)	(7.8)	(7.7)	(7.8)	(7.8)	(7.8)	(7.8)	(7.8)	(7.8)
Manpower Cost	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.6)	(0.6)	(0.6)
Tariff to State	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)
Project Consultancy Fee	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.2)	(1.2)
Electricity and Green Energy Charges	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)
Total Direct Cost	(33.3)	(33.3)	(33.3)	(33.2)	(33.3)	(33.3)	(33.3)	(33.4)	(33.3)	(33.3)
Director's & Advisors' Fee and Staff Salaries	(1.5)	(1.5)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)
Administrative Cost	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
Insurance Premium	(1.3)	(1.2)	(1.1)	(1.1)	(1.0)	(0.9)	(0.9)	(0.8)	(0.7)	(0.7)
Lease of Land/Water	0.0	0.0	0.0	(0.1)	(0.1)	0.0	0.0	0.0	(0.1)	0.0
Taxation	(8.8)	(8.9)	(8.9)	(8.9)	(8.9)	(12.6)	(12.6)	(12.6)	(12.6)	(12.6)
Total Indirect Cost	(11.9)	(11.9)	(11.9)	(12.0)	(11.9)	(15.4)	(15.4)	(15.3)	(15.3)	(15.2)
Net Cash Flow from Operating Activities	43.5	43.5	43.5	43.5	43.5	40.0	40.0	40.0	40.0	40.1
Principal Repayments	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.9)	(13.9)	(13.9)	(13.9)	(13.9)
Interest Payments	(17.7)	(16.5)	(15.3)	(14.1)	(12.9)	(11.8)	(10.6)	(9.4)	(8.2)	(7.1)
Net Cash Flow from Financing Activities	(31.5)	(30.3)	(29.1)	(27.9)	(26.7)	(25.7)	(24.5)	(23.3)	(22.1)	(21.0)
Capital Expenditure	-	-	-	-	-	-	-	-	-	-
Net Cash Flow	12.0	13.2	14.4	15.6	16.8	14.3	15.5	16.7	17.9	19.1

Appendix C: Detailed Cash Flow Projection Until Year 25 (3/3)

Item Description / USD mil'	Year 16	Year 17	Year 18	Year 19	Year 20	Year 21	Year 22	Year 23	Year 24	Year 25	Total *
Revenue from Hydrogen	85.2	85.2	85.2	85.2	85.3	85.3	85.3	85.3	85.3	85.3	2,095.1
Revenue from Solar	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	86.3
Total Revenue	88.6	88.6	88.6	88.6	88.7	88.7	88.7	88.7	88.7	88.7	2,181.4
Maintenance Cost	(7.8)	(7.8)	(7.7)	(7.8)	(7.8)	(7.8)	(7.8)	(7.8)	(7.8)	(7.8)	(194.3)
Manpower Cost	(0.6)	(0.6)	(0.6)	(0.6)	(0.6)	(0.6)	(0.7)	(0.7)	(0.7)	(0.7)	(14.2)
Tariff to State	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.4)	(3.5)	(3.5)	(3.5)	(83.8)
Project Consultancy Fee	(1.2)	(1.2)	(1.3)	(1.2)	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.2)	(31.4)
Electricity and Green Energy Charges	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.3)	(20.2)	(20.2)	(20.2)	(507.2)
Total Direct Cost	(33.3)	(33.3)	(33.3)	(33.3)	(33.4)	(33.4)	(33.5)	(33.5)	(33.5)	(33.4)	(831.0)
Director's & Advisors' Fee and Staff Salaries	(1.6)	(1.7)	(1.7)	(1.7)	(1.7)	(1.8)	(1.8)	(1.8)	(1.8)	(1.8)	(40.4)
Administrative Cost	(0.3)	(0.3)	(0.3)	(0.3)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)	(8.1)
Insurance Premium	(0.7)	(0.5)	(0.5)	(0.4)	(0.4)	(0.2)	(0.2)	(0.2)	(0.2)	(0.1)	(20.2)
Lease of Land/Water	0.0	(0.1)	0.0	0.0	(0.1)	(0.1)	(0.1)	0.0	0.0	(0.1)	(1.3)
Taxation	(12.6)	(12.6)	(12.7)	(12.7)	(12.6)	(12.7)	(12.6)	(12.7)	(12.7)	(12.7)	(270.0)
Total Indirect Cost	(15.2)	(15.2)	(15.2)	(15.1)	(15.2)	(15.2)	(15.1)	(15.1)	(15.1)	(15.1)	(340.0)
Net Cash Flow from Operating Activities	40.1	40.1	40.1	40.2	40.1	40.1	40.1	40.1	40.1	40.2	1,010.4
Principal Repayments	(13.9)	(13.9)	(13.9)	(13.9)	(13.9)	-	-	-	-	-	(277.0)
Interest Payments	(5.9)	(4.7)	(3.5)	(2.4)	(1.1)	-	-	-	-	-	(247.2)
Net Cash Flow from Financing Activities	(19.8)	(18.6)	(17.4)	(16.3)	(15.0)	0.0	0.0	0.0	0.0	0.0	(524.2)
Capital Expenditure	-	-	-	-	-	-	-	-	-	-	-
Net Cash Flow	20.3	21.5	22.7	23.9	25.1	40.1	40.1	40.1	40.1	40.2	486.2

* Note: The variance in the total amount is due to rounding difference.